K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

ΔACK vuông tại C có CI vuông góc AK

nên AK*AI=AC^2

ΔCAB vuông tại C có CO là đường cao

nên AO*AB=AC^2=AK*AI

23 tháng 5 2021

a. xét (O):

sđ : \(\widehat{AB}=180\) (cung chắn nửa đường tròn)

sđ \(\widehat{AC}=sđ\widehat{BC}=\dfrac{1}{2}sđ\widehat{AB}\)

\(sđ\widehat{AC}=sđ\widehat{BC}=90\)

mà \(\widehat{AC}=\widehat{AOC}\)⇒ \(\widehat{AOC}=90\)

\(\widehat{AIC}=90\) ⇒ \(\widehat{AOC}=\widehat{AIC}\)

⇒ tứ giác ACIO nội tiếp

\(\Delta AOC\) vuông tại (O)     (\(\widehat{AOC}=90\))

OA=OC=R    (A;C ϵ (O;R))

⇒ΔAOC vuông cân

\(\widehat{CAO}=45\)   (t/c tam giác vuông cân)

mà \(\widehat{CAO}+\widehat{CIO}=180\)

\(\widehat{CIO}=180-45=135\)

\(\widehat{CIO}+\widehat{OID}=180\)      (t/c kề bù)

\(\widehat{OID}=180-135=45\)

 

 

23 tháng 5 2021

b.ACIO nội tiếp    (cmt)

\(\Rightarrow\widehat{A_1}=\widehat{O_1}\)   ( 2 góc nội tiếp chắn \(\widehat{CI}\))

xét (O):

\(\widehat{A_1}=\dfrac{1}{2}\widehat{COM}\)     (t/c đường tròn)

mà \(\widehat{A_1}=\widehat{O_1}\)

\(\widehat{O_1}=\dfrac{1}{2}\widehat{COM}\)     

OI nằm giữa OC và OM

⇒OI là tia phân giác của \(\widehat{COM}\)

a: góc ACD=góc AMD=90 độ

=>ACMD nội tiếp

góc BMK+góc BCK=180 độ

=>BMKC nội tiếp

b: Xét ΔCAK vuông tại C và ΔCDB vuông tại C có

góc CAK=góc CDB

=>ΔCAK đồng dạng với ΔCDB

=>CA/CD=CK/BC

=>CA*CB=CD*CK

 

3 tháng 6 2021

1. vì M là điểm nằm chính giữa cung AC⇒AH=HC

-->OM đi qua trung điểm H của dây cung AC

--->OM⊥AC hay ∠MHC=90

có ∠AMB=90 (góc nội tiếp) nên BM//CK

⇒∠AMB=∠MKC=90 có ∠MKC+∠MHC=90+90=180

⇒tứ giác CKMH nội tiếp

3 tháng 6 2021

2.ΔABC có ∠CBA+∠CAB=90

ΔAHO có ∠HOA+∠CAB=90

→∠CBA=∠HOA⇒CB//OH hay CB//MD

mà CD//MB ⇒tứ giác CDBM là hình bình hành

⇒CD=MB và DM=CB

a) Xét (O) có 

ΔAMB nội tiếp đường tròn(A,M,B\(\in\)(O))

AB là đường kính(gt)

Do đó: ΔMAB vuông tại M(Định lí)

\(\Leftrightarrow AM\perp MB\) tại M

\(\Leftrightarrow AM\perp BD\) tại M

\(\Leftrightarrow\widehat{AMD}=90^0\)

Xét tứ giác ADMC có 

\(\widehat{AMD}=\widehat{ACD}\left(=90^0\right)\)

\(\widehat{AMD}\) và \(\widehat{ACD}\) là hai góc cùng nhìn cạnh AD

Do đó: ADMC là tứ giác nội tiếp(Dấu hiệu nhận biết tứ giác nội tiếp)