K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 3 2018

a) tta có góc HBD=góc ABC ( đối đỉnh )

         góc KCE=góc ACB ( đối đỉnh )

    mà góc ABC=góc ACB ( tam giác ABC cân )

suy ra góc HBD=gócKCE

xét tam giác HBD và KCE có :

HBD=KCE

BHD=CKE (=90 độ )

BD=CE

=) tam giác HBD=KCE

=)HB=CK

b) ta có góc AHB=ACK ( = 180* - góc ABC )

xét tam giác AHB và tam giác AKC có

góc AHB=gócAKC

HB=CK

AB=AC

suy ra tam giác AHB= tam giác AKC

=) góc AHK = góc AKC

c) ta có HD//KE ( cùng vuông vs BC )

mà HD=KE ( tg HBD=tgKCE )

suy ra HKED là hình bình hành 

=) HK//DE

d) ta có góc HAD=góc KAE ( tg AHB=tgAKC )

=) góc HAD+BAC=góc KAE+BAC

=) góc HAE= góc KAD

do AB=AC ; BD=CE =) AB+BD=AC+CE

=) AD=AE

xét tg AHE và tg AKD có

góc HAE=góc KAD

AH=AK ( tg AHB=tg AKC )

AE=AD

suy ra tg AHE = tg AKD 

e) do HKED là hình bình hành ; HK vuông vs HD

=) HKED là hình chữ nhật

mà  I là gđ của 2 đường chéo HE và DK

suy ra ID=IE

xét tg AID và tg AIE có

AD=AE

ID=IE

chung AI

suy ra tg AID=tg AIE

=) góc DAI = góc EAI

=) AI là phân giác goc DAE

mà tg DAE cân tại A

suy ra AI là đường cao tg DAE

=) AI vuông vs DE

9 tháng 4 2019

A, 

xét \(\Delta ABD\)và \(\Delta ACD\)

CÓ \(\hept{\begin{cases}AB=AC\\chungAD\\BD=DC\end{cases}}\)

SUY RA \(\Delta ABD\)=\(\Delta ACD\) (C.C.C)  (1)

=> \(\widehat{BDA}\)=\(\widehat{CDA}\)

MÀ \(\widehat{BDA}\)+\(\widehat{CDA}\)=180

=> \(\widehat{BDA}\)=\(\widehat{CDA}\)=90

B,  (1) => BC=DC=1/2 BC=8

ÁP DỤNG ĐỊNH LÍ PITAGO TA CÓ

\(AB^2=AD^2+BD^2\)

=> AD^2=36

=>AD=6

9 tháng 4 2019

c, vì M là trọng tâm nên AM=2/3AD=4

d

12 tháng 10 2019

Bài 3:

Xét 2 \(\Delta\) \(AMO\)\(BNO\) có:

\(\widehat{MAO}=\widehat{NBO}=90^0\left(gt\right)\)

\(OA=OB\) (vì O là trung điểm của \(AB\))

\(AM=BN\left(gt\right)\)

=> \(\Delta AMO=\Delta BNO\left(c-g-c\right)\)

=> \(\widehat{MOA}=\widehat{NOB}\) (2 góc tương ứng)

\(\widehat{MOA}+\widehat{MOB}=180^0\) (vì 2 góc kề bù)

=> \(\widehat{NOB}+\widehat{MOB}=180^0.\)

=> \(M,O,N\) thẳng hàng. (1)

Ta có: \(\Delta AMO=\Delta BNO\left(cmt\right)\)

=> \(OM=ON\) (2 cạnh tương ứng) (2)

Từ (1) và (2) => \(O\) là trung điểm của \(MN\left(đpcm\right).\)

Bài 4:

Chúc bạn học tốt!