gieo một con xúc sắc cân đối đồng chất.
a) Liệt kê không gian mẫu
b) Xác định các biến cố sau:
A:"Số chấm xuất hiện là 1 số nguyên tố"
B:"Số chấm xuất hiện không phải là một số nguyên tố"
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a/Những chấm là số chẵn: \(2;4;6\)
\(\rightarrow\)Có 3 mặt là số chẵn
Xác suất của biến cố A:
\(3:6=\dfrac{1}{2}\)
b/Chấm vừa chia hết cho 2 vừa chia hết cho 3: \(6\)
\(\rightarrow\)Có 1 mặt là số vừa chia hết cho 2 vừa chia hết cho 3
Xác suất của biến cố B:
\(1:6=\dfrac{1}{6}\)
c/Chấm không phải là số nguyên tố và là ước của 24: \(4\) ; \(6\)
\(\rightarrow\)Có 2 mặt không phải là số nguyên tố và là ước của 24
Xác suất của biến cố C:
\(2:6=\dfrac{1}{3}\)
a. Các kết quả có thể để sự kiện “Số chấm xuất hiện là số nguyên tố” xảy ra là: 2, 3, 5 vì đây là các số nguyên tố.
b. Nếu số chấm xuất hiện là 5 thì sự kiện “Số chấm xuất hiện không phải là 6” xảy ra vì số 5 khác số 6.
a) Biến cố: “Số chấm xuất hiện trên con xúc xắc là một hợp số” không phải là biến cố \(\overline K \).
b) Ta có \(K = \left\{ {2;3;5} \right\}\) và \(\overline K = \left\{ {1;4;6} \right\}\).
Đáp án B
Không gian mẫu là 1 , 2 , 3 , 4 , 5 , 6
Số kết quả thuận lợi cho biến cố là 2 , 3 , 5
Vậy xác suất cần tính bằng 3 6 = 1 2
Không gian mẫu là tập hợp số chấm xuất hiện khi gieo con xúc xắc hai lần liên tiếp khi đó \(n\left( \Omega \right) = 6.6 = 36\)
A = {(1; 1); (1; 2); (1; 3); (1; 4); (1; 5); (1; 6)} \( \Rightarrow P\left( A \right) = \frac{6}{{36}} = \frac{1}{6}\)
B = {(1; 2); (2; 2); (3; 2); (4; 2); (5; 2); (6; 2)} \( \Rightarrow P\left( B \right) = \frac{6}{{36}} = \frac{1}{6}\)
C = {(2; 6); (3; 5); (4; 4); (5; 3); (6; 2)} \( \Rightarrow P\left( C \right) = \frac{5}{{36}}\)
D = {(1; 6); (2; 5); (3; 4); (4; 3); (5; 2); (6; 1)} \( \Rightarrow P\left( D \right) = \frac{6}{{36}} = \frac{1}{6}\)
Do đó
\(P\left( A \right).P\left( C \right) = \frac{1}{6}.\frac{5}{{36}} = \frac{5}{{216}};P\left( B \right).P\left( C \right) = \frac{1}{6}.\frac{5}{{36}} = \frac{5}{{216}};P\left( C \right).P\left( D \right) = \frac{5}{{36}}.\frac{1}{6} = \frac{5}{{216}}\)
Mặt khác
AC = \(\emptyset \Rightarrow P\left( {AC} \right) = 0\)
BC = {(6; 2)} \( \Rightarrow P\left( {BC} \right) = \frac{1}{{36}}\)
CD = \(\emptyset \Rightarrow P\left( {CD} \right) = 0\)
Khi đó \(P\left( {AC} \right) \ne P\left( A \right).P\left( C \right);P\left( {BC} \right) \ne P\left( B \right).P\left( C \right);P\left( {CD} \right) \ne P\left( C \right).P\left( D \right)\)
Vậy các cặp biến cố A và C; B và C, C và D không độc lập.
Tập hợp gồm các kết quả có thể xảy ra đối với mặt xuất hiện của xúc xắc là:
A = {mặt 1 chấm; mặt 2 chấm; mặt 3 chấm; mặt 4 chấm; mặt 5 chấm; mặt 6 chấm}.
Số phần tử của tập hợp A là 6.
a) Có ba kết quả thuận lợi cho biến cố “Mặt xuất hiện của xúc xắc có số chấm là số nguyên tố” là: mặt 2 chấm, mặt 3 chấm, mặt 5 chấm.
Vì thế, xác suất của biến cố trên là \(\dfrac{3}{6} = \dfrac{1}{2}\).
b) Có hai kết quả thuận lợi cho biến cố “Mặt xuất hiện của xúc xắc có số chấm là số chia 4 dư 1” là: mặt 1 chấm, mặt 5 chấm.
Vì thế, xác suất của biến cố trên là \(\dfrac{2}{6} = \dfrac{1}{3}\).
a: \(\Omega=\left\{1;2;3;4;5;6\right\}\)
b: A={2;3;5}
B={1;4;6}