Cho tam giác DEF vuông tại D có DE = 3cm và DF = 4cm . Gọi I là trung điểm của EF . Tính độ dài cạnh EF
Vẽ hình giúp mình luông nha
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: EF=căn DE^2+DF^2=6cm
b: Xét ΔEDF vuông tại D có sin E=DF/EF=căn 3/2
=>góc E=60 độ
ΔEDF vuông tại D có DI là trung tuyến
nên DI=IE=IF
Xét ΔIDE có ID=IE và góc E=60 độ
nên ΔIDE đều
a)Xét\(\Delta DEF\)có:\(EF^2=DE^2+DF^2\)(Định lý Py-ta-go)
hay\(5^2=3^2+DF^2\)
\(\Rightarrow DF^2=5^2-3^2=25-9=16\)
\(\Rightarrow DF=\sqrt{16}=4\left(cm\right)\)
Ta có:\(DE=3cm\)
\(DF=4cm\)
\(EF=5cm\)
\(\Rightarrow DE< DF< EF\)hay\(3< 4< 5\)
b)Xét\(\Delta DEF\)và\(\Delta DKF\)có:
\(DE=DK\)(\(D\)là trung điểm của\(EK\))
\(\widehat{EDF}=\widehat{KDF}\left(=90^o\right)\)
\(DF\)là cạnh chung
Do đó:\(\Delta DEF=\Delta DKF\)(c-g-c)
\(\Rightarrow EF=KF\)(2 cạnh t/ứ)
Xét\(\Delta KEF\)có:\(EF=KF\left(cmt\right)\)
Do đó:\(\Delta KEF\)cân tại\(F\)(Định nghĩa\(\Delta\)cân)
c)Ta có:\(DF\)cắt\(EK\)tại\(D\)là trung điểm của\(EK\Rightarrow DF\)là đg trung tuyến xuất phát từ đỉnh\(F\)của\(\Delta KEF\)
\(KI\)cắt\(EF\)tại\(I\)là trung điểm của\(EF\Rightarrow KI\)là đg trung tuyến xuất phát từ đỉnh\(K\)của\(\Delta KEF\)
Ta lại có:\(DF\)cắt\(KI\)tại\(G\)
mà\(DF\)là đg trung tuyến xuất phát từ đỉnh\(F\)của\(\Delta KEF\)
\(KI\)là đg trung tuyến xuất phát từ đỉnh\(K\)của\(\Delta KEF\)
\(\Rightarrow G\)là trọng tâm của\(\Delta KEF\)
\(\Rightarrow GF=\frac{2}{3}DF\)(Định lí về TC của 3 đg trung tuyến của 1\(\Delta\))
\(=\frac{2}{3}.4=\frac{8}{3}\approx2,7\left(cm\right)\)
Vậy\(GF\approx2,7cm\)
Áp dụng PTG: \(EF=\sqrt{DE^2+DF^2}=13\left(cm\right)\)
Vì DM là trung tuyến ứng cạnh huyền EF nên \(DM=\dfrac{1}{2}EF=\dfrac{13}{2}\left(cm\right)\)
Ta có: \(\dfrac{HD}{HE}=\dfrac{3}{6}=\dfrac{1}{2}\)
\(\dfrac{ID}{IF}=\dfrac{4}{8}=\dfrac{1}{2}\)
Do đó: \(\dfrac{HD}{HE}=\dfrac{ID}{IF}\left(=\dfrac{1}{2}\right)\)
Xét ΔDEF có
H\(\in\)DE(gt)
I\(\in\)DF(gt)
\(\dfrac{HD}{HE}=\dfrac{ID}{IF}\)(cmt)
Do đó: HI//EF(Định lí Ta lét đảo)
a: EF=5cm
DM=2,5cm
b: Xét tứ giác DENF có
M là trung điểm của EF
M là trung điểm của DN
Do đó: DENF là hình bình hành
mà \(\widehat{EDF}=90^0\)
nên DENF là hình chữ nhật
c: Xét tứ giác FBEA có
FB//EA
FB=EA
Do đó: FBEA là hình bình hành
Suy ra: Hai đường chéo FE và BA cắt nhau tại trung điểm của mỗi đường
mà M là trung điểm của FE
nên M là trung điểm của BA
hay M,A,B thẳng hàng
Xét tam giác DEF vuông tại D (gt)
\(\Rightarrow EF^2=DE^2+DF^2\)(định lí Pi-ta-go)
Mà \(\hept{\begin{cases}DE=4\left(gt\right)\\EF=5\left(gt\right)\end{cases}}\)
\(\Rightarrow5^2=4^2+DF^2\)
\(\Rightarrow25=16+DF^2\)
\(\Rightarrow DF^2=25-16=9\)
\(\Rightarrow DF=3\)(vì độ dài cạnh luôn lớn hơn 0)
a) Ta có: \(DE^2+DF^2=3^2+4^2=25\left(cm\right)\)
và \(EF^2=5^2=25\left(cm\right)\)
\(\Rightarrow DE^2+DF^2=EF^2\)
\(\Delta DEF\)có ba cạnh thỏa mãn định lý Py - ta - go nên \(\Delta DEF\) vuông
b) Vì DI là trung tuyến ứng với cạnh huyền của tam giác vuông \(DEF\)nên \(DI=\frac{1}{2}EF\)
\(\Rightarrow DI=\frac{1}{2}.5=2,5\left(cm\right)\)
c) Vì DI là trung tuyến ứng với cạnh huyền của tam giác vuông \(DEF\)nên \(DI=FI=EI\)
Lại có IK vuông góc DF
\(\Rightarrow\)IK là đường trung trực của đoạn thẳng DF
\(\Rightarrow IK=\frac{1}{2}DF=\frac{1}{2}.4=2\left(cm\right)\)
Vì DM là trung tuyến ứng với cạnh huyền EF nên \(DM=\dfrac{1}{2}EF=\dfrac{5}{2}=2,5\left(cm\right)\)
mình dùng pitago thôi
\(3^2+4^2=25=5^2\)
EF=5 cm
EF=5cm