K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 4 2017

Để \(\frac{n^2+n+2}{n+1}\) có giá trị là số nguyên thì \(\left(n^2+n+2\right)⋮\left(n+1\right)\)

Ta có : n2 + n + 2 = n x n + n + 2 = n x ( n + 1 ) + 2

=> n x ( n + 1 ) + 2 chia hết cho n + 1

Ta thấy : n x ( n + 1 ) chia hết cho n + 1

=> 2 chia hết cho n + 1

Hay \(\left(n+1\right)\inƯ_2\)

Ư(2) = { 1 ; -1 ; 2 ; -2 }

Ta có bảng sau :

n + 11-12-2
n0-21-3

Vậy để A có giá trị là số nguyên thì \(n\in\) { 0 ; -2 ; 1 ; -3 }

22 tháng 4 2017

Để \(A\in Z\)thì \(n^2+n+2⋮n+1\)

\(\Rightarrow n\left(n+1\right)+2⋮n+1\)

\(\Rightarrow2⋮n+1\)

\(\Rightarrow n+1\left\{-2;2;-1;1\right\}\)

\(\Rightarrow n\in\left\{-3;1;-2;0\right\}\)

19 tháng 5 2017

\(A=\frac{n+1}{n-2}=\frac{n-2+2+1}{n-2}=\frac{n-2+3}{n-2}=\frac{n-2}{n-2}+\frac{3}{n-2}=2+\frac{3}{n-2}\)

Để A là số nguyên thì \(\frac{3}{n-2}\)là số nguyên 

\(\frac{3}{n-2}\)là 1 số nguyên khi và chỉ khi \(n-2\)là ước của 3

\(\Rightarrow n-2=\left(-1;1;-3;3\right)\)

\(n-2=1\Rightarrow n=1+2=3\)

\(n-2=\left(-1\right)\Rightarrow n=\left(-1\right)+2=1\)

\(n-2=3\Rightarrow n=3+2=5\)

\(n-2=\left(-3\right)\Rightarrow n=\left(-3\right)+2=\left(-1\right)\)

Vậy \(n\)là \(3;1;5;\left(-1\right)\)để A là phân số 

19 tháng 5 2017

Xin lổi 

Để A là giá trị lớn nhất nhé ! nhưng vẩn nhớ k cho tớ nhé 

5 tháng 6 2019

....

a) \(n\in\left(-1,1,3,5\right)\)thì A có giá trị nguyên

b) Ko hiểu

***

A=n+1n2n+1n−2

a. để B là phân số thì n-2 khác 0 => n khác 2

b.A=n+1n2n+1n−2n2+3n2n−2+3n−2n2n2n−2n−2+3n23n−2=1+3n23n−2

để B nguyên khi n-2 là ước của 3

ta có ước 3= (-1;1;3;-3)

nên n-2=1=> n=3

n-2=-1=> n=1

n-2=3=> n=5

n-2=-3=> n=-1

vậy để A nguyên thì n=(-1;1;3;5)

19 tháng 3 2018

\(b)\) Ta có : 

\(A=\frac{6n-1}{3n+2}=2-\frac{5}{3n+2}\) ( câu a mình đã phân tích rồi nên khỏi phân tích lại ) 

Để A đạt GTNN thì \(\frac{5}{3n+2}\) phải đạt GTLN hay nói cách khác \(3n+2>0\) và đạt GTNN

\(\Rightarrow\)\(3n+2=1\)

\(\Rightarrow\)\(3n=-1\)

\(\Rightarrow\)\(n=\frac{-1}{3}\) ( loại vì \(n\inℤ\) ) 

\(\Rightarrow\)\(3n+2=2\)

\(\Rightarrow\)\(3n=0\)

\(\Rightarrow\)\(n=0\)

Suy ra : \(A=2-\frac{5}{3n+2}=2-\frac{5}{3.0+2}=2-\frac{5}{2}=\frac{-1}{2}\)

Vậy \(A_{min}=\frac{-1}{3}\) khi \(n=0\)

Chúc bạn học tốt ~ 

19 tháng 3 2018

\(a)\) Ta có : 

\(\frac{6n-1}{3n+2}=\frac{6n+4-5}{3n+2}=\frac{6n+4}{3n+2}-\frac{5}{3n+2}=\frac{2\left(3n+2\right)}{3n+2}-\frac{5}{3n+2}=2-\frac{5}{3n+2}\)

Để \(A\inℤ\)  thì \(\frac{5}{3n+2}\inℤ\)\(\Rightarrow\)\(5⋮\left(3n+2\right)\)\(\Rightarrow\)\(\left(3n+2\right)\inƯ\left(5\right)\)

Mà \(Ư\left(5\right)=\left\{1;-1;5;-5\right\}\)

Suy ra : 

\(3n+2\)\(1\)\(-1\)\(5\)\(-5\)
\(n\)\(\frac{-1}{3}\)\(-1\)\(1\)\(\frac{-7}{3}\)

Mà \(n\inℤ\) nên \(n\in\left\{-1;1\right\}\)

Vậy \(n=1\) hoặc \(n=-1\)

Chúc bạn học tốt ~ 

22 tháng 7 2021

a, Để A là phân số khi n - 3 \(\ne\)0<=> n \(\ne\)3

b, Để A nguyên khi \(n+1⋮n-3\Leftrightarrow n-3+4⋮n-3\Leftrightarrow4⋮n-3\)

\(\Rightarrow n-3\inƯ\left(4\right)=\left\{\pm1;\pm2;\pm4\right\}\)

n - 31-12-24-4
n42517-1

 

a) Để A là phân số thì \(n-3\ne0\)

hay \(n\ne3\)

b) Để A là số nguyên thì \(n+1⋮n-3\)

\(\Leftrightarrow4⋮n-3\)

\(\Leftrightarrow n-3\in\left\{1;-1;2;-2;4;-4\right\}\)

hay \(n\in\left\{4;2;5;1;7;-1\right\}\)

20 tháng 2 2018

\(A=\frac{n+1}{n-2}\)

\(A=\frac{n-2+3}{n-2}\)

\(A=1+\frac{3}{n-2}\)

\(\Leftrightarrow n-2\inƯ\left(3\right)\)

\(\Leftrightarrow n-2\in\left\{\pm1;\pm3\right\}\)

đến đây lập bảng là xong

4 tháng 7 2019

a) Ta có:

Để A là phân số <=> n + 4 \(\ne\)0 <=> n \(\ne\)-4

b) Với : + )n = 1 => \(A=\frac{1+5}{1+4}=\frac{6}{5}\)

+) n = -1 => \(A=\frac{-1+5}{-1+4}=\frac{4}{3}\)

c) Ta có: \(A=\frac{n+5}{n+4}=\frac{\left(n+4\right)+1}{n+4}=1+\frac{1}{n+4}\)

Để A \(\in\)Z <=> 1 \(⋮\)n + 4

      <=> n + 4 \(\in\)Ư(1) = {1; -1}

Lập bảng :

n + 41 -1
   n-3 -5

Vậy ....

4 tháng 7 2019

1a) Để A là phân số thì n \(\ne\)- 4 ; n 

b) + Khi n = 1 

=> \(A=\frac{n+5}{n+4}=\frac{1+5}{1+4}=\frac{6}{5}\)

+ Khi n = -1 

=> \(A=\frac{n+5}{n+4}=\frac{-1+5}{-1+4}=\frac{4}{3}\)

 c) Để \(A\inℤ\)

=> \(n+5⋮n+4\)

=> \(n+4+1⋮n+4\)

Ta có : Vì \(n+4⋮n+4\)

=> \(1⋮n+4\)

=> \(n+4\inƯ\left(1\right)\)

=> \(n+4\in\left\{\pm1\right\}\)

Lập bảng xét các trường hợp

\(n+4\)\(1\)\(-1\)
\(n\)\(-3\)\(-5\)

Vậy \(A\inℤ\Leftrightarrow n\in\left\{-3;-5\right\}\)

4 tháng 5 2019

a) n ∈ Z và n ≠ –2

b) HS tự làm

c) n ∈ {-3;-1}