K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 4 2023

bài i gì

 

2 tháng 5

Chịu 

4 tháng 5 2018


 a) Áp dụng định lí Pytago vào tam giác ABC vuông tại A, ta có:

BC2= AB2 +AC2

=> BC =\(\sqrt{AB^2+AC^2}\)=\(\sqrt{5^2+12^2}\)=13 (cm)

4 tháng 5 2018

Trả lời (Tự vẽ hình)

a) \(\Delta ABC\)vuông tại A

=> Áp dụng định lý Pi-ta-go

Ta có: \(BC^2=AB^2+AC^2\)

\(\Rightarrow BC^2=5^2+12^2\)

\(\Rightarrow BC^2=169\)

\(\Rightarrow BC=13\left(cm\right)\)

Vậy BC=13 (cm)

b) Xét \(\Delta ABC\&\Delta ADC\)có:

  AC chung (1)

\(\widehat{BAC}\)\(=\widehat{CDA}\)\(\left(=90^o\right)\left(2\right)\)

\(AB=AD\left(gt\right)\left(3\right)\)

(1)(2)(3)\(\Rightarrow\Delta ABC=\Delta ADC\)

Vậy \(\Delta ABC=\Delta ADC\left(đpcm\right)\)

c) Vì \(\Delta ABC=\Delta ADC\)

\(\Rightarrow\hept{\begin{cases}c_1=c_2\left(cmt\right)\\BC=AE\left(gt\right)\\CEA=c_1\end{cases}\Rightarrow\Delta AEC}\)cân 

Vậy \(\Delta AEC\)cân (đpcm)

\(\)

lm hộ ik mak, mk chỉ cần ý d thoy

4 tháng 5 2018

a, 

ta có : tam giác ABC vuông tại A 

\(\Rightarrow AB^2+AC^2=BC^2\)

thay số : \(5^2+12^2=BC^2\)

               \(BC^2=169\)

\(\Rightarrow BC=\sqrt{169}\)

\(\Rightarrow BC=13\)

mik đag nghĩ

a: Xét ΔIAB và ΔIDC có

IA=ID

AB=DC

IB=IC

=>ΔIAB=ΔIDC

=>góc IAB=góc IDC=góc IAD

=>AI là phân giác của góc BAC
b: Xét ΔAEI vuông tại E và ΔAHI vuông tại H có

AI chung

góc EAI=góc HAI

=>ΔAEI=ΔAHI

=>AE=AH; IE=IH

=>AI là trung trực của EH

Bài 2. Cho ABC có A = 120°. Tia phân giác của A cắt BC tại D. Tia phân giác củaADC cắt AC tại I. Gọi H, K, E lần lượt là hình chiếu của I trên đương thẳng AB,BC, AD. Chứng minh:a) AC là tia phân giác của DAH .b) IH = IKBài 5. Cho tam giác ABC vuông tại A. Từ một điểm K bất kì trên cạnh BC, vẽ KH AC (HAC). Trên tia đối của tia HK lấy điểm I sao cho HI = HK. Chứngminh:a) Chứng minh AB //HKb) Chứng minh KAH...
Đọc tiếp

Bài 2. Cho ABC có A = 120°. Tia phân giác của A cắt BC tại D. Tia phân giác của
ADC cắt AC tại I. Gọi H, K, E lần lượt là hình chiếu của I trên đương thẳng AB,
BC, AD. Chứng minh:
a) AC là tia phân giác của DAH .
b) IH = IK
Bài 5. Cho tam giác ABC vuông tại A. Từ một điểm K bất kì trên cạnh BC, vẽ KH
 AC (HAC). Trên tia đối của tia HK lấy điểm I sao cho HI = HK. Chứng
minh:
a) Chứng minh AB //HK
b) Chứng minh KAH IAH 
c) Chứng minh AKI cân
Bài 7. Cho ABC, AB = AC. Trên cạnh AB lấy điểm D, trên cạnh AC lấy điểm E sao
cho AD = AE. Gọi M là giao điểm của BE và CD. Chứng minh:
a) BE = CD b) BMD = CME
c) Đường vuông góc với OE tại E cắt Ox, Oy lần lượt tại M, N. Chứng minh
MN / / AC //BD.
Bài 8. Cho xOy . Lấy các điểm A,B thuộc tia Ox sao cho OA > OB. Lấy các điểm C, D
thuộc Oy sao cho OC = OA, OD = OB. Gọi E là giao điểm của AD và BC
Chứng minh.:
a) AD = BC b) ABE = CDE
c) OE là tia phân giác của góc xOy

4
24 tháng 4 2020

mik ngu hình lắm xin lỗi nha

24 tháng 4 2020

ngu thì xen zô nói làm j

4 tháng 5 2018

A B C D

b)\(Xét\Delta ABCvà\Delta ADC\),ta có:

AB=AD(giả thiết)

\(\widehat{BAC}=\widehat{DAC}\)=90o(vì \(\Delta\)ABC vuông tại A)

AC:chung

=>\(\Delta ABC=\Delta ADC\left(c.g.c\right)\)

=>BC=DC(hai cạnh tương ứng)

=>\(\Delta BCD\)cân tại C(đpcm)

4 tháng 5 2018

hình bạn tự vẽ nha

a)xét tam giác ABC vuông tại A,có

\(BC^2=AB^2+AC^2\)

\(\Leftrightarrow AC^2=BC^2-AB^2\)

\(\Leftrightarrow AC^2=5^2-3^2\)

=>AC^2=16

=>AC=4 cm

b)xét tam giác ABC và tam giác ADC có

góc BAC=góc DAC(= 90 độ)

AB=AC(giả thiết)

cạnh AC chung

=>tam giác ABC = tam giác ADC(c.g.c)

=>BC=DC(2 cạnh tương ứng)

=>tam giác BCD cân tại C

mình chỉ làm được đến đay thôi,thực ra mình học rùi nhưng không nhớ nên mong bạn thông cảm nha