Cho A= \(\frac{1}{1+3}+\frac{1}{1+3+5}+\frac{1}{1+3+5+7}+...+\frac{1}{1+3+5+7+...+2017}\)
Chứng minh A<\(\frac{3}{4}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài mình làm đơn giản thôi bạn nhé!
\(A=\frac{1}{1+3}+\frac{1}{1+3+5}+\frac{1}{1+3+7}+...+\frac{1}{1+3+5+..2017}\)
Ta có: \(\frac{1}{1+3}< \frac{3}{4}\)
\(\frac{1}{1+3+5}< \frac{3}{4}\)
\(\frac{1}{1+3+5+7}< \frac{3}{4}\)
. . . . . . . .
\(\frac{1}{1+3+5+...+2017}< \frac{3}{4}\)
____________________________________________________
\(A< \frac{3}{4}-\frac{1}{1+3+5+...+2017}\)
\(\Rightarrow A< \frac{3}{4}^{\left(đpcm\right)}\)
thằng tth quá ngu. làm vậy là sai bét.
hình như CTV mày câu và spam câu trả lời à
\(A=\frac{1}{1+3}+\frac{1}{1+3+5}+...+\frac{1}{1+3+5+...+2017}\)
\(\Rightarrow A=\frac{1}{\frac{\left(3+1\right).\left[\left(3-1\right):2+1\right]}{2}}+\frac{1}{\frac{\left(5+1\right).\left[\left(5-1\right):2+1\right]}{2}}+...+\frac{1}{\frac{\left(2017+1\right).\left[\left(2017-1\right):2+1\right]}{2}}\)
\(\Rightarrow A=\frac{1}{\frac{4.2}{2}}+\frac{1}{\frac{6.3}{2}}+...+\frac{1}{\frac{2018.1009}{2}}\)
\(\Rightarrow A=\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{1009^2}\)
A=1/2^2+1/3^2+...+1/1009^2
=>A<1/1.2+1/2.3+1/3.4+...+1/1008.1009
A<1-1/2+1/2-1/3+1/3-1/4+...+1/1008-1/1009
=>A<1-1/1009
=>A<3/4
\(1+3+5+7+....+\left(2n+1\right)=\left\{\left[\left(2n+1\right)-1\right]:2+1\right\}.\frac{2n+2}{2}=\left(n+1\right)^2\)
Áp dụng ta có :
\(A=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{1009^2}\)
Ta có :\(\frac{1}{3^2}< \frac{1}{2.3};\frac{1}{4^2}< \frac{1}{3.4};...;\frac{1}{1009^2}< \frac{1}{1008.1009}\)
\(\Rightarrow A< \frac{1}{2^2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{1008.1009}\)
\(\frac{1}{4}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+..+\frac{1}{1008}-\frac{1}{1009}=\frac{1}{4}+\frac{1}{2}-\frac{1}{1009}=\frac{3}{4}-\frac{1}{1009}< \frac{3}{4}\)
\(\Rightarrow A< \frac{3}{4}\left(đpcm\right)\)
A=1/(1+3)+1/(1+3+5)+1/(1+3+5+7)+...+1/(1+3+5+7+...+2017)
A=1/2^2+1/3^2+1/4^2+...+1/1009^2
2A=2/2^2+2/3^2+2/4^2+...+2/1009^2
Ta co :(x-1)(x+1)=(x-1)x+x-1=x^2-x+x-1=x^2-1<x^2
suy ra 2A<2/(1*3)+2/(3*5)+2/(5*7)+...+2/(1008*1010)
suy ra 2A <1-1/3+1/3-1/5+1/5-1/7+...+1/1008-1/1010
suy ra 2A<1-1/1010
suy ra 2A<2009/2010<1<3/2
suy ra 2A <3/2
suy ra A <3/4 (dpcm)
nho k cho minh voi nha
có cách nào dễ hiểu hơn không ạ?