\(A=\frac{1}{1+3}+\frac{1}{1+3+5}+\frac{1}{1+3+5+7}+...+\frac{1}{1+3+5+...+2017}.\)
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 3 2018

Bài mình làm đơn giản thôi bạn nhé!

\(A=\frac{1}{1+3}+\frac{1}{1+3+5}+\frac{1}{1+3+7}+...+\frac{1}{1+3+5+..2017}\)

Ta có: \(\frac{1}{1+3}< \frac{3}{4}\)

\(\frac{1}{1+3+5}< \frac{3}{4}\)

\(\frac{1}{1+3+5+7}< \frac{3}{4}\)

 .  .  .  . . . . .

\(\frac{1}{1+3+5+...+2017}< \frac{3}{4}\)

____________________________________________________

\(A< \frac{3}{4}-\frac{1}{1+3+5+...+2017}\)

\(\Rightarrow A< \frac{3}{4}^{\left(đpcm\right)}\)

18 tháng 3 2018

thằng tth quá ngu. làm vậy là sai bét.

hình như CTV mày câu và spam câu trả lời à

8 tháng 8 2020

tại vì có cộng bao nhiêu số thì khi rút gọn cung ko thể lớn hơn 4/9 vì 4/9 còn có thể là 40000000/90000000 nên là ko thể

8 tháng 8 2020

Ta có :\(\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{2017^2}< \frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{2016.2017}\)

\(=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2016}-\frac{1}{2017}=\frac{1}{2}-\frac{1}{2017}=\frac{2015}{4034}< \frac{1}{2}< \frac{4}{9}\)(đpcm)