Rút gọn
3100 - 399 + 398 - 397 +....+ 32 - 3 +1
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=3^{100}-3^{99}+3^{98}-...-3+1\\ \Rightarrow\dfrac{1}{3}A=3^{99}-3^{98}+3^{97}-...-1+\dfrac{1}{3}\\ \Rightarrow\dfrac{4}{3}A=3^{100}+\dfrac{1}{3}\\ \Rightarrow A=\dfrac{3^{101}}{4}+\dfrac{1}{4}\)
ta có số các số hạng là 398-1+1=398 số hạng
a) A=(1-2)+(3-4)+(5-6)+.......+(397-398)
A=(-1)+(-1)+.....+(-1)
có 398/2=199 cặp
vậy A=(-1)*199=-199
\(A=1-2+3-4+5-6+...+397-398\)
\(A=\left(1-2\right)+\left(3-4\right)+\left(5-6\right)+...+\left(397-398\right)\)
\(A=\left(-1\right)+\left(-1\right)+\left(-1\right)+...\left(-1\right)\)
\(A=\left(-1\right)\cdot199\)
\(A=-199\)
\(B=1+3-5-7+9+11-...+393-395-397-399\)( chỗ này mình cố ý viết thêm để dễ nhìn )
\(B=1+\left(3-5-7+9\right)-\left(11-13-15+17\right)-...-\left(387-389-391+393\right)-\left(395-397-399\right)\)
\(B=1+0-0-...-0-\left(-401\right)\)
\(B=1-\left(-401\right)\)
\(B=402\)
a) Ta có: \(\dfrac{25^{28}+25^{24}+25^{20}+...+25^4+1}{25^{30}+25^{28}+...+25^2+1}\)
\(=\dfrac{25^{24}\left(25^4+1\right)+25^{16}\left(25^4+1\right)+...+\left(25^4+1\right)}{25^{28}\left(25^2+1\right)+25^{24}\left(25^2+1\right)+...+\left(25^2+1\right)}\)
\(=\dfrac{\left(25^4+1\right)\left(25^{24}+25^{16}+25^8+1\right)}{\left(25^2+1\right)\left(25^{28}+25^{24}+...+1\right)}\)
\(=\dfrac{\left(25^4+1\right)\cdot\left[25^{16}\left(25^8+1\right)+\left(25^8+1\right)\right]}{\left(25^2+1\right)\left[25^{24}\left(25^4+1\right)+25^{16}\left(25^4+1\right)+25^8\left(25^4+1\right)+\left(25^4+1\right)\right]}\)
\(=\dfrac{\left(25^4+1\right)\left(25^8+1\right)\left(25^{16}+1\right)}{\left(25^2+1\right)\left(25^4+1\right)\left(25^{24}+25^{16}+25^8+1\right)}\)
\(=\dfrac{\left(25^8+1\right)\left(25^{16}+1\right)}{\left(25^2+1\right)\left[25^{16}\left(25^8+1\right)+\left(25^8+1\right)\right]}\)
\(=\dfrac{\left(25^8+1\right)\left(25^{16}+1\right)}{\left(25^2+1\right)\left(25^8+1\right)\left(25^{16}+1\right)}\)
\(=\dfrac{1}{25^2+1}=\dfrac{1}{626}\)
A = 1 + 3 + 5 + 7 + .......... + 397 + 399
A có số số hạng là:
( 399 - 1 ) : 2 + 1 = 200 ( số hạng )
A có kết quả là:
( 399 + 1 ) x 200 : 2 = 40000
B = 2 + 4 + 6 + 8 + .......... + 396 + 398
B có số số hạng là:
( 398 - 2 ) : 2 + 1 = 199 ( số hạng )
B có kết quả là:
( 398 + 2 ) x 199 : 2 = 39800
Vì 40000 > 39800 nên A > B
Tham khảo
Ta có: 3A = 3.(1+3+32+33+...+399+3100)(1+3+32+33+...+399+3100)
3A = 3+32+33+...+3100+31013+32+33+...+3100+3101
Suy ra: 3A – A = (3+32+33+...+3100+3101)−(1+3+32+33+...+399+3100)(3+32+33+...+3100+3101)−(1+3+32+33+...+399+3100)
2A = 3101−13101−1
⇒⇒ A = 3101−123101−12
Vậy A = 3101−12
\(A=1-3+3^2-3^3+3^4-...-3^{98}-3^{99}+3^{100}\\ 3A=3-3^2+3^3-3^4-...-3^{98}+3^{99}-3^{100}+3^{101}\\ 3A-A=3^{101}-1\\ \Rightarrow A=\dfrac{3^{101}-1}{2}\)
A = 1 - 3 + 32 - 33 + 34 - ... + 398 - 399 + 3100
3A = 3 - 32 + 33 - 34+ 35 - ... + 399 - 3100 + 3101
3A + A = 3 - 32+ 33-34+35 -...+399 - 3100 + 3101 + 1 - 3 +...-399+3100
4A = 3101 + 1
A = \(\dfrac{3^{101}+1}{4}\)
Đặt A = 3^100 - 3^99 + 3^98 - 3^97 +...+3^2 - 3 + 1
3A = 3^101 - 3^100 + 3^99 - 3^98 +...+3^3 - 3^2 + 1
3A +A = 3^101 - 3^100 + 3^99 - 3^98 +.. + 3^3 - 3^2 + 3 + 3^100 - 3^99 + 3^98 -...+3^2 - 3 + 1
4A = 3^101 + 1
A = (3^101 + 1) /4