Cho a,b,c ko âm và ko lớn hơn 2 thoả: a+b+c=3. C/m: a^2 +b^2+c^2 <= 5.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Do \(0\le a;b;c\le2\)
\(\Rightarrow abc+\left(2-a\right)\left(2-b\right)\left(2-c\right)\ge0\)
\(\Leftrightarrow2\left(ab+bc+ca\right)-4\left(a+b+c\right)+8\ge0\)
\(\Leftrightarrow2\left(ab+bc+ca\right)\ge4\)
\(\Leftrightarrow\left(a+b+c\right)^2-\left(a^2+b^2+c^2\right)\ge4\)
\(\Leftrightarrow9-\left(a^2+b^2+c^2\right)\ge4\)
\(\Leftrightarrow a^2+b^2+c^2\le5\)
Dấu "=" xảy ra khi \(\left(a;b;c\right)=\left(0;1;2\right)\) và các hoán vị
Ta có: \(0\le a;b;c\le2\Rightarrow\left(2-a\right)\left(2-b\right)\left(2-c\right)\ge0\)
\(\Leftrightarrow\left(4-2a-2b+ab\right)\left(2-c\right)\ge0\)
\(\Leftrightarrow8-4c-4a+2ac-4b+2bc+2ab-abc\ge0\)
\(\Leftrightarrow8-4\left(a+b+c\right)+2\left(ab+bc+ac\right)-abc\ge0\)
\(\Leftrightarrow-4+a^2+b^2+c^2+2\left(ab+bc+ac\right)-abc\ge a^2+b^2+c^2\)
\(\Leftrightarrow5\ge a^2+b^2+c^2+abc\ge a^2+b^2+c^2\Rightarrow a^2+b^2+c^2\le5\)\("="\Leftrightarrow\left(a;b;c\right)=\left(0;1;2\right)\) và hoán vị
Ta có : \(\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\ge0\)
=> \(a^2-2ab+b^2+b^2-2ac+c^2+c^2-2ac+a^2\ge0\)
=> \(2\left(a^2+b^2+c^2\right)\ge2ab+2bc+2bc\)
=> \(3\left(a^2+b^2+c^2\right)\ge a^2+b^2+c^2+2ab+2bc+2bc\)
=> \(3\left(a^2+b^2+c^2\right)\ge\left(a+b+c\right)^2=100\)
=> \(a^2+b^2+c^2\ge\frac{100}{3}\)
Vậy ....
a2+b2+c2=4−abc≤4
Smax=4 khi 1 trong 3 số bằng 0
4=abc+a2+b2+c2≥abc+33√(abc)2
Đặt 3√abc=x>0⇒x3+3x2−4≤0
⇔(x−1)(x+2)2≤0⇒x≤1
⇒abc≤1⇒S=4−abc≥3
Dấu "=" xảy ra khi a=b=c=1
Min là hoán vị a=b=0 c=2 ; a=c=0 b=2 ; b=c=0 a=2 mà :vv
mà thôi Min làm đr còn max
TKS
Ta có a2 - (b - c)2 <= a2
<=>(a+b-c)(a-b+c) <= a2
Tương tự
(b-c+a)(b-a+c) <= b2
(c-a+b)(c-b+a) <= c2
Từ đó ta có (b-c+a)2(b-a+c)2(c-b+a)2 <= a2 b2 c2
<=> (c-b+a)(b-c+a)(b-a+c) <= abc (nhân vô chuyển vế nha)
<=> (a2 b + a2 c) + (b2 a + b2 c) + (c2 a + c2 b) <= a3 + b3 + c3 + 3abc
<=> a2 (a+b+c) + b2 (a+b+c) + c2 (a+b+c) <= 2(a3 + b3 + c3) + 3abc ( cộng 2 vế cho
Ta có a2 - (b - c)2 <= a2
<=>(a+b-c)(a-b+c) <= a2
Tương tự
(b-c+a)(b-a+c) <= b2
(c-a+b)(c-b+a) <= c2
Từ đó ta có (b-c+a)2(b-a+c)2(c-b+a)2 <= a2 b2 c2
<=> (c-b+a)(b-c+a)(b-a+c) <= abc
<=> (a2 b + a2 c) + (b2 a + b2 c) + (c2 a + c2 b) <= a3 + b3 + c3 + 3abc
<=> a2 (a+b+c) + b2 (a+b+c) + c2 (a+b+c) <= 2(a3 + b3 + c3) + 3abc (cộng 2 vế cho a3 + b3 + c3)
<=> a2 + b2 + c2 <= 2(a3 + b3 + c3 ) + 3abc
Xong
Theo giả thuyết ta có:
\(\left(2-a\right)\left(2-b\right)\left(2-c\right)\ge0\Leftrightarrow8+2\left(ab+bc+ca\right)-4\left(a+b+c\right)-abc\ge0\)
Cộng 2 vế cho \(a^2+b^2+c^2\) rồi sau đó rút gọn thì ta sẽ được:
\(\left(a+b+c\right)^2\ge a^2+b^2+c^2+abc+4\Leftrightarrow a^2+b^2+c^2+abc\le5\)
Do \(abc\ge0\Rightarrow a^2+b^2+c^2\le5\)