Nêu cách chứng minh công thức tính bán kính đường tròn nội tiếp đa giác đều
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi O là tâm đường tròn nội tiếp tam giác ABC
Nối OA, OB, OC
Khoảng cách từ tâm O đến các tiếp điểm là đường cao của các tam giác OAB, OAC, OBCv
Ta có : S A B C = S O A B + S O A C + S O B C
= (1/2).AB.r + (1/2).AC.r + (1/2).BC.r
= (1/2)(AB + AC + BC).r
Mà AB + AC + BC = 2p
Nên S A B C = (1/2).2p.r = p.r
*cách vẽ:
- vẽ đường tròn (O,2cm)
- Từ một điểm A trên đường tròn (O;2cm) đặt liên tiếp các cung bằng nhau có dây căng cung bằng 2cm
-Nối AB, BC, CD, DE, EG, GA ta được lục giác đều ABCDEG nội tiếp trong đường tròn (O;2cm)
-kẻ đường kính vuông góc với AB và DE cắt đường tròn lần lượt tại I và L. Ta có:
-kẻ đường kính vuông góc với BC và EG cắt đường tròn lần lượt tại J và M.Ta có:
-kẻ đường kính vuông góc với CD và AG cắt đường tròn lần lượt tại N và K.Ta có:
-Nối AI , IB, BJ, JC, CK, KD, DL, LE, EM, MG, GN, NA đa giác AIBJCKDLEMGN là đa giác đều mười hai cạnh nội tiếp trong đường tròn (O;2cm)
Tham khảo: