K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 4 2023

\(2x^2-\left(m+1\right)x+m-1=0\left(1\right)\)

Để phương trình (1) có nghiệm thì:

\(\Delta\ge0\Rightarrow\left(m+1\right)^2-4.2.\left(m-1\right)\ge0\)

\(\Leftrightarrow m^2+2m+1-8m+8\ge0\)

\(\Leftrightarrow\left(m-3\right)^2\ge0\) (luôn đúng)

Vậy \(\forall m\) thì phương trình (1) luôn có nghiệm.

Giả sử phương trình (1) có 2 nghiệm x1, x2 với \(x_1\ge x_2\) \(\Rightarrow x_1-x_2\ge0\)

Theo định lí Viete ta có:

\(\left\{{}\begin{matrix}x_1+x_2=\dfrac{m+1}{2}\\x_1x_2=\dfrac{m-1}{2}\end{matrix}\right.\)

Vì hiệu 2 nghiệm bằng tích của chúng nên ta có:

\(x_1-x_2=\left|x_1x_2\right|\)

\(\Leftrightarrow\left(x_1-x_2\right)^2=\left(x_1x_2\right)^2\)

\(\Leftrightarrow\left(x_1+x_2\right)^2-4x_1x_2=\left(x_1x_2\right)^2\)

\(\Leftrightarrow\left(\dfrac{m+1}{2}\right)^2-4.\dfrac{m-1}{2}=\left(\dfrac{m-1}{2}\right)^2\)

\(\Leftrightarrow\left(m+1\right)^2-8\left(m-1\right)=\left(m-1\right)^2\)

\(\Leftrightarrow m^2+2m+1-8m+8=m^2-2m+1\)

\(\Leftrightarrow4m=8\Leftrightarrow m=2\)

Vậy \(m=2\)

 

 

x1-x2=(m-1)/2

=>(x1-x2)^2=(m-1)^2/4

=>(x1+x2)^2-4x1x2=1/4(m^2-2m+1)

=>(m+1/2)^2-4*(m-1)/2=1/4m^2-1/2m+1/4

=>m^2+m+1/4-2m+2-1/4m^2+1/2m-1/4=0

=>3/4m^2-1/2m+2=0

=>3m^2-2m+8=0

=>PTVN

Sửa đề: Có tổng 2 nghiệm bằng tích của chúng

Δ=(m+1)^2-4*2*(m-1)

=m^2+2m+1-8m+8=m^2-6m+9=(m-3)^2>=0

=>Phương trình luôn có hai nghiệm

x1+x2=x1*x2

=>(m+1)/2=(m-1)/2

=>m=0

15 tháng 5 2023

Sửa đề: Có tổng 2 nghiệm bằng tích của chúng

Δ=(m+1)^2-4*2*(m-1)

=m^2+2m+1-8m+8=m^2-6m+9=(m-3)^2>=0

=>Phương trình luôn có hai nghiệm

x1+x2=x1*x2

=>(m+1)/2=(m-1)/2

=>m=0

17 tháng 5 2023

∆ = m² - 4(m - 5)

= m² - 4m + 5

= (m² - 4m + 4) + 1

= (m - 2)² + 1 > 0 với mọi m

Phương trình luôn có 2 nghiệm phân biệt

Theo Viét ta có:

x₁ + x₂ = m (1)

x₁.x₂ = m - 5 (2)

x₁ + 2x₂ = 1 (3)

Lấy (3) - (1) ta được x₂ = 1 - m thay vào (1) ta được

x₁ + 1 - m = m

⇔ x₁ = 2m - 1

Thay x₁ = 2m - 1 và x₂ = 1 - m vào (2) ta được:

(2m - 1)(1 - m) = m - 5

⇔ 2m - 2m² - 1 + m - m + 5 = 0

⇔ -2m² + 2m + 5 = 0

∆ = 4 - 4.(-2).5

= 44

m₁ = -1 + √11

m₂ = -1 - √11

Vậy m = -1 + √11; m = -1 - √11 thì phương trình đã cho có hai nghiệm thỏa mãn x₁ + 2x₂ = 1

10 tháng 5 2021

\(\left(2x+m\right)\left(x-1\right)-2x^2+mx+m-2=0\)

\(\Leftrightarrow2x^2-2x+mx-m-2x^2+mx+m-2=0\)

\(\Leftrightarrow\left(2m-2\right)x-2=0\)

\(\Leftrightarrow\left(2m-2\right)x=2\)

\(\Leftrightarrow x=\dfrac{2}{2m-2}\)

Để phương trình đã cho có nghiệm âm thì:

\(\dfrac{2}{2m-2}< 0\)

\(\Leftrightarrow2m-2< 0\)

\(\Leftrightarrow2m< 2\)

\(\Leftrightarrow m< 1\)

Vậy \(m< 1\) thì phương trình đã cho có nghiệm âm.

10 tháng 5 2021

\(\left(2x+m\right)\left(x-1\right)-2x^2+mx+m-2=0\)

\(\Leftrightarrow2x^2+mx-2x-m-2x^2+mx+m-2=0\)

\(\Leftrightarrow\left(2m-2\right)x-2=0\left(1\right)\)

+) Nếu \(m=1\)\(\rightarrow\left(1\right)\Leftrightarrow0x-2=0\left(V_{n_o}\right)\)

+) Nếu \(m\ne1\rightarrow x=\dfrac{2}{2m-2}\)

Để \(x< 0\Leftrightarrow\dfrac{2}{2m-2}< 0\) mà \(2>0\Leftrightarrow2m-2< 0\Leftrightarrow m< 1\)

NV
20 tháng 3 2022

Phương trình có nghiệm khi:

\(\Delta'=\left(m+1\right)^2-\left(m^2+m+1\right)\ge0\)

\(\Rightarrow m\ge0\)

Khi đó: \(\left\{{}\begin{matrix}x_1=m+1-\sqrt{m}\\x_2=m+1+\sqrt{m}\end{matrix}\right.\)

17 tháng 2 2022

\(\left\{{}\begin{matrix}x+my=3\\x+2y=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\left(m-2\right)y=2\\x=1-2y\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=\dfrac{2}{m-2}\\x=1-\dfrac{4}{m-2}=\dfrac{m-6}{m-2}\end{matrix}\right.\)

a, Ta có x < 0 ; y > 0 

\(x< 0\Rightarrow\dfrac{m-6}{m-2}< 0\)

Ta có : m - 2 > m - 6 

\(\left\{{}\begin{matrix}m-2>0\\m-6< 0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m>2\\m< 6\end{matrix}\right.\Leftrightarrow2< m< 6\)

\(y>0\Leftrightarrow\dfrac{2}{m-2}>0\Rightarrow m>2\)

Vậy 2 < m < 6 

b, \(x-2y=3\Rightarrow\dfrac{m-6}{m-2}-\dfrac{4}{m-2}=3\Leftrightarrow\dfrac{m-10}{m-2}=3\)

\(\Rightarrow m-10=3m-6\Leftrightarrow2m=-4\Leftrightarrow m=-2\)

13 tháng 1 2023

Ptr có: `\Delta'=[-(m-1)^2]+4m=m^2-2m+1+4m=(m+1)^2 >= 0`

  `=>{(x_1+x_2=[-b]/a=2m-2),(x_1.x_2=c/a=-4m):}`

  Để ptr có ít nhất `1` nghiệm không âm

`<=>2` nghiệm đều `>= 0`, hoặc có duy nhất `1` nghiệm và `>= 0` hoặc `1` nghiệm `>= 0` và `1` nghiệm `< 0`

`@TH1: 2` nghiệm đều `>= 0`

    `=>{(x_1.x_2 >= 0),(x_1+x_2 >= 0):}`

`<=>{(-4m >= 0),(2m-2 >= 0):}`

`<=>{(m <= 0),(m >= 1):}=>` Không có `m` t/m

`@TH2:` Có duy nhất `1` nghiệm và nghiệm đó `>= 0`

    `=>{((m+1)^2=0),(x=[-b']/a):}`

`<=>{(m=-1),(x=m-1):}`

`<=>{(m=-1),(x=-2):}` (ko t/m `x >= 0`)

`@TH3:` Có `2` nghiệm pb có `1` nghiệm `< 0` và `1` nghiệm `>= 0`

  `=>{(m+1 \ne 0),(x_1.x_2 < 0):}`

`<=>{(m \ne -1),(-4m < 0):}`

`<=>{(m \ne -1),(m > 0):}`

`<=>m > 0`

Vậy `m > 0` thì ptr đã cho có ít nhất `1` nghiệm không âm.

8 tháng 6 2023

a) Để phương trình có 2 nghiệm phân biệt 

<=> \(\Delta=\left[-\left(4m+3\right)^2\right]-4.2.\left(2m-1\right)=16m^2+24m+9-16m+8=16m^2+8m+1+16=\left(4m+1\right)^2+16>0\)

với mọi giá trị của m. 

Vậy phương trình luôn có 2 nghiệm phân biệt với mọi giá trị của m.

b) Vì phương trình luôn có 2 nghiệm phân biệt với mọi giá trị của m nên ta có: x1+x2\(\dfrac{4m+3}{2}\)và x1.x2=\(\dfrac{2m-1}{2}\)

x1+x2=2m+2; x1x2=m^2+4

x1^2+2(m+1)x2<=2m^2+20

=>x1^2+x2(x1+x2)<=2m^2+20

=>x1^2+x2x1+x2^2<=2m^2+20

=>(x1+x2)^2-x1x2<=2m^2+20

=>(2m+2)^2-(m^2+4)<=2m^2+20

=>4m^2+8m+4-m^2-4-2m^2-20<=0

=>m^2-8m-20<=0

=>m<=-10 hoặc m>2

31 tháng 3 2023

\(x^2-2\left(m+1\right)x+m^2+4=0\left(1\right)\)

Để phương trình có hai nghiệm phân biệt thì \(\Delta'>0\) hay \(\Delta'=\left(m+1\right)^2-m^2-4=m^2+2m+1-m^2-4=2m-4>0\Leftrightarrow m>2\)

Theo hệ thức Viét ta có : \(\left\{{}\begin{matrix}x_1+x_2=2\left(m+1\right)\\x_1.x_2=m^2+4\end{matrix}\right.\)

Vì \(x_1^2\) là nghiệm của phương trình (1) nên ta có : \(x_1^2-2\left(m+1\right)x+m^2+4=0\Leftrightarrow x_1^2=2\left(m+1\right)x_1-m^2-4\)

Ta lại có : \(x_1^2+2\left(m+1\right)x_2\le2m^2+20\)

\(\Leftrightarrow2\left(m+1\right)x_1-m^2-4+2\left(m+1\right)x_2\le2m^2+20\)

\(\Leftrightarrow2\left(m+1\right)\left(x_1+x_2\right)-m^2-4\le2m^2+20\)

\(\Leftrightarrow4\left(m+1\right)^2-m^2\le2m^2+20\)

\(\Leftrightarrow4\left(m^2+2m+1\right)-m^2\le2m^2+20\)

\(\Leftrightarrow m^2+8m-16\le0\)

\(\Leftrightarrow-10\le m\le2\)

Kết hợp điều kiện....

 

11 tháng 11 2018

a) Xét: x2 - 4mx + 9.(m – 1)2 = 0 (1)

Δ’ = (2.m)2 – 9.(m – 1)2 = 4m2 – 9.(m2 – 2m + 1) = -5m2 + 18m – 9

Phương trình (1) có nghiệm ⇔ Δ’ ≥ 0

⇔ -5m2 + 18m – 9 ≥ 0

⇔ 5m2 - 18m + 9 ≤ 0

⇔ (5m – 3)(m – 3) ≤ 0

⇔ 3/5 ≤ m ≤ 3.

b) + x1 ; x2 là hai nghiệm của (1) nên theo định lý Vi-et ta có:

Giải bài 3 trang 160 SGK Đại Số 10 | Giải toán lớp 10

+ Tìm hệ thức giữa x1 và x2 không phụ thuộc vào m.

Giải bài 3 trang 160 SGK Đại Số 10 | Giải toán lớp 10

Giải bài 3 trang 160 SGK Đại Số 10 | Giải toán lớp 10

Thử lại:

+ m = 1, (1) trở thành x2 – 4x = 0 có hai nghiệm x = 0; x = 4 có hiệu bằng 4

+ m = 13/5, (1) trở thành Giải bài 3 trang 160 SGK Đại Số 10 | Giải toán lớp 10 có hai nghiệm x = 7,2 và x = 3,2 có hiệu bằng 4.

Vậy m = 1 hoặc m = 13/5.