cho tam giác nhọn ABC (AB <AC) nội tiếp đường tròn tâm O, các điểm M, N lần lượt là trung điểm của AB, AC. Đường cao kẻ từ A của tam giác ABC cắt OM, ON lần lượt tại các điểm E, F. đường thẳng BE, CF cắt nhau tại D. Tia BE, CF cắt (O) lần lượt tại P, Q. lấy điểm K trên AC, L trên BA sao cho EK//LF//BC.a) chứng minh 4 điểm A,P, E, K nằm trên 1 đường tròn. b) PQBC là hình thang cân.c) chứng minh K, L nằm trên phân giác ngoài của góc BDC
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
cho tam giác ABC nhọn (AB<AC) nội tiếp đường tròn (O;K) có BD là đường kính và đường cao AH của tam giác ABC cắt (O;K) tại E đề nek
đề đây nha mn :(( cho tam giác ABC nhọn (AB<AC) nội tiếp đường tròn (O;K) có BD là đường kính và đường cao AH của tam giác ABC cắt (O;K) tại E
Cho tam giác ABC nhọn AB<AC M là trung điểm của BC trên tia đời của tia MA có điểm E s cho AM=ME
a) cmr tam giác AMB=CMR
b từ A kẻ D s cho HA =HD cmr CE = BP
c cmr CE = CD tam giác AMD là tam giác j vì s
D CMR AM NHỎ HƠN AB +AC /2
CHỈ LM MỖI Ý D THUI NHA NHANH NHA
a: Xét ΔAMB và ΔEMC có
MA=ME
góc AMB=góc EMC
MB=MC
=>ΔAMB=ΔEMC
b: Xet ΔBAD có
BH vừa là đường cao, vừa là trung tuyến
=>ΔBAD cân tại B
=>BD=BA=CE
c: Xet ΔMAD có
MH vừa là đường cao,vừa là trung tuyến
=>ΔMAD cân tại M
d: AM<1/2(AB+AC)
=>AE<AB+AC
=>AE<BE+AB(luôn đúng)
a: EN//BC
=>góc ANE=góc ACB=góc APB
=>APEK nội tiếp