K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 4 2023

`4x^2 +4(x+6)^2=60^2`

`<=>4x^2 +4(x^2 + 12x + 36)=3600`

`<=> 4x^2 +4x^2 + 48x +144=3600`

`<=> 8x^2 + 48x + 144-3600=0`

`<=> 8x^2 + 48x -3456=0`

`<=> 8(x^2+6x-432)=0`

`<=>8(x^2+24x-18x-432)=0`

`<=> 8 (x-18)(x+24)=0`

\(\Leftrightarrow\left[{}\begin{matrix}x-18=0\\x+24=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=18\\x=-24\end{matrix}\right.\)

10 tháng 5 2020

\(\left(x+1\right)\left(x+2\right)\left(x+4\right)\left(x+5\right)=40\)

\(\Leftrightarrow\left(x+1\right)\left(x+5\right)\left(x+2\right)\left(x+4\right)=40\)

\(\Leftrightarrow\left(x^2+6x+5\right)\left(x^2+6x+8\right)=40\)

\(\Leftrightarrow\left(x^2+6x+5\right)\left(x^2+6x+5+3\right)=40\)

\(\Leftrightarrow p\left(p+3\right)=40\) (khi đặt \(\left(x^2+6x+5\right)=p\)

\(\Leftrightarrow p^2+3p=40\)

\(\Leftrightarrow p^2\cdot2\cdot p\cdot\frac{3}{2}+\left(\frac{3}{2}\right)^2=\frac{169}{4}\)

\(\Leftrightarrow\left(p+\frac{3}{2}\right)^2-\left(\frac{13}{2}\right)^2=0\)

\(\Leftrightarrow\left(p+\frac{3}{2}-\frac{13}{2}\right)\left(p+\frac{3}{2}+\frac{13}{2}\right)=0\)

\(\Leftrightarrow\left(p-5\right)\left(p+8\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}p=5\\p=-8\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x^2+6x+5=5\\x^2+6x+5=-8\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x^2+6x=0\\x^2+2\cdot x\cdot3+9-9+5=-8\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x\left(x+6\right)=0\\\left(x+3\right)^2=-4\left(\text{vôlí}\right)\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x=0\\x=-6\end{cases}}\)

10 tháng 5 2020

\(\left(x-2\right)\left(x^2+5x-7\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=2\\x^2+5x-7=0\end{cases}}\)

Ta có: \(\Delta=25-4\cdot\left(-7\right)=25+28=53\)

\(\Rightarrow\Delta>0\)

\(\Rightarrow\text{pt có 2 nghiệm pb}\)

\(\Rightarrow\hept{\begin{cases}x_1=\frac{-5-\sqrt{53}}{2}\\x_2=\frac{-5+\sqrt{53}}{2}\end{cases}}\)

\(\text{Vậy pt trên có nghiệm là x=2; x=}\frac{-5\pm\sqrt{53}}{2}\)

Δ=(2m-2)^2-4(m^2-4)

=4m^2-8m+4-4m^2+16=-8m+20

Để phương trình có hai nghiệm phân biệt thì -8m+20>0

=>m<5/2

x1(x1-3)+x2(x2-3)=6

=>x1^2+x2^2-3(x1+x2)=6

=>(x1+x2)^2-2x1x2-3(x1+x2)=6

=>(2m-2)^2-3(2m-2)-2m^2+8=6

=>4m^2-8m+4-6m+6-2m^2+8=6

=>2m^2-14m+12=0

=>m^2-7m+6=0

=>m=1(nhận) hoặc m=6(loại)

19 tháng 8 2021

\(\left\{{}\begin{matrix}\left(x-1\right)^2-2y=2\\3\left(x-1\right)^2+3y=1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\left(x-1\right)^2=2y+2\\3\left(2y+2\right)+3y=1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\left(x-1\right)^2=2y+2\\y=-\dfrac{5}{9}\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\left(x-1\right)^2=\dfrac{8}{9}\\y=-\dfrac{5}{9}\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x-1=\pm\dfrac{2\sqrt{2}}{3}\\y=-\dfrac{5}{9}\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=1\pm\dfrac{2\sqrt{2}}{3}\\y=-\dfrac{5}{9}\end{matrix}\right.\)

18 tháng 3 2019

a,  (2x+5)mũ 2=(x+2) mũ 2

=.> (2x+5) mũ 2-(x+2) mũ 2=0

=> (2x+5+x+2)x(2x+5-x-2)=0

=>(3x+7)x(x+3)=0

=>3x+7=0 hoặc x+3=0

3x+7=0=>x=-7/3

x+3=0 =>x=-3

vậy x=-7/3 hoặc x=-3

hok tot

22 tháng 7 2021

mong mọi người giải giúp em vs gianroigianroi

13 tháng 3 2017

Giải phương trình \(\frac{x-ab}{a+b}+\frac{x-ac}{a+c}+\frac{x-bc}{b+c}=a+b+c\)

Δ=(2m+2)^2-4(-m-5)

=4m^2+8m+4+4m+20

=4m^2+12m+24

=4(m^2+3m+6)

=4(m^2+2*m*3/2+9/4+15/4)

=4(m+3/2)^2+15>=15

=>PT luôn có 2 nghiệm

(x1-x2)^2-x1(x1+3)-x2(x2+3)=-4

=>(x1+x2)^2-4x1x2-(x1+x2)^2+2x1x2-3(x1+x2)=-4

=>-2(-m-5)-3(2m+2)=-4

=>2m+10-6m-6=-4

=>-4m+4=-4

=>-4m=-8

=>m=2