tìm số nguyên dương n lớn nhất sao cho n2+2n+1 phần n+23 có giá trị nguyên
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có :
\(\frac{n^2+2n+1}{n+23}\in Z\Rightarrow n^2+2n+1⋮n+23\)
\(\Rightarrow n^2+23n-\left(21n-1\right)⋮n+23\)
\(\Rightarrow n\left(n+23\right)-\left(21n-1\right)⋮n+23\)
Mà \(n\left(n+23\right)⋮n+23\)
\(\Rightarrow21n-1⋮n+23\)
\(\Rightarrow21n+483-484⋮n+23\)
\(\Rightarrow21\left(n+23\right)-484⋮n+23\)
,Mà \(21\left(n+23\right)⋮n+23\)
\(\Rightarrow484⋮n+23\)
Vậy n lớn nhất \(\Leftrightarrow n+23=484\)
\(\Leftrightarrow n=461\)
a) A \(=\frac{2n-1}{n-3}=\frac{2n-6}{n-3}+\frac{5}{n-3}\) nguyên
<=> n - 3 thuộc Ư(5) = {-5; -1; 1; 5}
<=> n thuộc {-2; 2; 4; 8}
b) A lớn nhất <=> \(\frac{5}{n-3}\) lớn nhất <=> n - 3 là số nguyên dương nhỏ nhất
<=> n - 3 = 1 <=> n = 4
Muốn \(\frac{n^2+2n+1}{n+23}\) có giá trị nguyên thì:
\(n^2+2n+1⋮n+23\Rightarrow n^2+2n+1-n.\left(n+23\right)⋮n+23\)
\(\Rightarrow n^2+2n+1-n^2-23n⋮n+23\)
\(\Rightarrow-21n+1⋮n+23\Rightarrow-21n+1+21\left(n+23\right)⋮n+23\)
\(\Rightarrow-21n+1+21n+23⋮n+23\)
\(\Rightarrow24⋮n+23\Rightarrow n+23\inƯ\left(24\right)\)
Mà n lớn nhất nên: n+23 lớn nhất => n+23 = 24 => n=1
Vậy n = 1
Cho mình xin lỗi:
\(-21n+1⋮n+23\Rightarrow-21n+1+21\left(n+23\right)⋮n+23\)
\(\Rightarrow-21n+1+21n+483⋮n+23\Rightarrow484⋮n+23\)
Mà n là số nguyên dương lớn nhất nên: n+23=484 => n = 461
Vậy n = 461