ĐỀ: Cho tứ giác ABCD nội tiếp trong dtron tâm O và I là điểm chính giữa cung AB (cung AB ko chứa C và D ). Dây ID;IC cắt AB tại M và N
a, CMR: tứ giác DMNC nội tiếp trong dtron
b, IC và AD cắt nhau tại E; ID và BC cắt nhau tại F . CMR: EF//AB
giúp mình câu B
Ta có \(\widehat{EDF}=\widehat{ECF}\) (chắn hai cung bằng nhau AI và BI của đường tròn (O))
\(\Rightarrow\) Tứ giác CDEF nội tiếp
\(\Rightarrow\widehat{DEF}+\widehat{DCF}=180^0\)
Mà \(\widehat{DCF}+\widehat{DAB}=180^0\) (tứ giác ABCD nội tiếp)
\(\Rightarrow\widehat{DEF}=\widehat{DAB}\)
\(\Rightarrow EF||AB\) (hai góc đồng vị bằng nhau)