Chứng minh rằng:
Nếu a=2=x+y thì:ax+2x+ay+2y=4=a^2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(f( x;y) = ax + 2x + ay + 2y + 4 = a^2\)
=> \(( a + 2 )( x + y ) = a^2 -4\)
=> \(( a + 2 )( x + y ) = ( a-2 )( a + 2 )\)
=> \(( a + 2 )( x + y ) - ( a-2 )( a + 2 )=0\)
=> \(( a + 2 )[ x + y - ( a-2 )] = 0\)
=> \(\left[\begin{matrix} x+y - ( a-2 )=0\\ a+2=0\end{matrix}\right.\)
=> \(\left[\begin{matrix} x+y = ( a-2 )\\ a=-2\end{matrix}\right.\)
Như vậy , nếu \(x+y=a-2\) thì \(f( x;y) = ax + 2x + ay + 2y + 4 = a^2\)
\(ax+2x+ay+2y+4\)
\(\Leftrightarrow x\left(a+2\right)+y\left(a+2\right)+4\)
\(=\left(x+y\right)\left(a+2\right)+4\)
\(=a^2-4+4=a^2\)
\(ax+2x+ay+2y+4=x\left(a+2\right)+y\left(a+2\right)+4=\left(a+2\right)\left(x+y\right)+4=\left(a+2\right)\left(a-2\right)+4=a^2-4+4=a^2\)
từ a-2=x+y => y=a-2-x
Bài \(3\)
\(A=\left(x-5\right)\left(2x+3\right)-2x\left(x-3\right)+x+7\)
\(=2x^2+3x-10x-15-\left(2x^2-6x\right)+x+7\)
\(=2x^2+3x-10x-15-2x^2+6x+x+7\)
\(=\left(2x^2-2x^2\right)+\left(3x-10x+6x+x\right)+\left(-15+7\right)\)
\(=-8\)
Vậy biểu thức không phụ thuộc vào biến
\(B=4\left(y-6\right)-y^2\left(2+3y\right)+y\left(5y-4\right)+3y^2\)
Đề như này à?
Bài \(4\)
\(a,4a^2-16b^2=4\left(a^2-4b^2\right)=4\left(a-2b\right)\left(a+2b\right)\)
\(b,4x^2-4x+1=\left(2x\right)^2-2.2x.1+1^2=\left(2x+1\right)^2\)
\(c,\) ?
\(d,\left(x-y\right)^2-\left(2x-y\right)^2\\ =\left[\left(x-y\right)-\left(2x-y\right)\right]\left[\left(x-y\right)+\left(2x-y\right)\right]\\ =\left(x-y-2x+y\right)\left(x-y+2x-y\right)\\ =\left(-x\right)\left(3x-2y\right)\)
\(e,8x^3-y^3=\left(2x\right)^3-y^3\\ =\left(2x-y\right)\left(4x^2+2xy+y^2\right)\)
\(i,3x+6y+\left(x+2y\right)\\ =3\left(x+2y\right)+\left(x+2y\right)\\ =4\left(x+2y\right)\)
\(j,ax-ay-x+y=\left(ãx-ay\right)-\left(x-y\right)\\ =a\left(x-y\right)-\left(x-y\right)=\left(x-y\right)\left(a-1\right)\)
`k,` `y` hay `y^2` ạ? vì nó mới phân tích được nhân tử.
b) VT=ax+2x+ay+2y+4=a\(^2\)
=a(x+y)+2(x+y)+4
=a(a-2)+2(a-2)+4
=\(a^2\)-2a+2a-4+4=a\(^2\)=VP
Ta có: \(\left(ax+by\right)^2=\left(a^2+b^2\right)\left(x^2+y^2\right)\)
\(\Leftrightarrow a^2x^2+2abxy+b^2y^2=a^2x^2+a^2y^2+x^2b^2+b^2y^2\)
\(\Leftrightarrow2abxy=a^2y^2+x^2b^2\)
\(\Leftrightarrow\left(ay-xb\right)^2=0\)
\(\Leftrightarrow ay=xb\)
hay \(\dfrac{a}{x}=\dfrac{b}{y}\)
\(VT=ax+2x+ay+2y+4\)
\(=a\left(x+y\right)+2\left(x+y\right)+4\)
\(=a\left(a-2\right)+2\left(a-2\right)+4\)
\(=a^2-2a+2a-4+4=a^2=VP\)
Ta có: \(VT=ax+2x+ay+2y+4\)
\(=\left(c+y\right)a+2\left(x+y\right)+4\)
\(=\left(a+2\right)\left(x+y\right)+4\)
mà \(a-2=x+y\)
\(\Rightarrow VT=\left(a+2\right)\left(a-2\right)=a^2-4+4=a^2\)
\(\Leftrightarrow VP\) -> ĐPCM.