cho a,b,c,d thuộc N* sao cho ab=cd. chứng minh rằng :a^n + b^n+c^n+d^n
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
cho a,b,c,d,n thuộc N*; biết ab=cd. Chứng minh rằng: a^n + b^n + c^n + d^n là hợp số.
ab=cd`
`⇔a/c=d/b `
Đặt `a/c=d/b=k`
`⇒a=ck;d=bk `
Ta có:
`A=a^n+b^n+c^n+d^n`
`⇔A=(ck)^n+b^n+c^n+(bk)^n`
`⇔A=c^n . k^n+b^n+c^n+b^n . k^n`
`⇔A=c^n(k^n+1)+b^n(k^n+1)`
`⇔A=(c^n+b^n)(k^n+1)`
`⇒A` là hợp số
mk cung dang mac bai nay nen mong nhieu bn giup do chi nha !
Từ a+b = c+d suy ra d = a+b-c
Vì tích ab liền sau của tích cd nên ab = cd + 1 hay ab - cd = 1
ab - c.(a+b-c) = 1
ab - ac - cb + c2 = 1
a.(b - c) - c.(b -c) = 1
(b-c) .(b+c) = 1
suy ra a-c = b-c ( vì cùng bằng 1 hoặc -1) suy ra a=b (DPCM)
xét 2 trường hợp:
Nếu ƯCLN(a,c)=1=>từ ab \(⋮\)c\(\Rightarrow\)b\(⋮\)c\(\Rightarrow\)d chia hết cho a, ta có ab=cd suy ra \(\frac{b}{c}=\frac{d}{a}\)=k (k\(\in\)N*)
suy ra b=k.c,d=k.a
\(\Rightarrow a^n+b^n+c^n+d^n=a^n+k^n.c^n+c^n+k^n.a^n\)\(=\left(k^n+1\right).c^n+a^n.\left(k^n+1\right)\)
\(=\left(k^n+1\right).\left(a^n+c^n\right)\)vì k thuộc N nên \(k^n\)thuộc N*\(\Rightarrow\)k^n thuộc N* nên \(\left(k^n+1\right).\left(a^n+c^n\right)⋮k^n+1\)
nên \(a^n+b^n+c^n+d^n\)là hợp số
Nếu ƯCLN(a,c)=p.Đặt a=xp; c= yp
với ƯCLN(x,y)=1.Từ ab=cd suy ra
x.m.b=y.m.d\(\Rightarrow\)x.b=y.d
Chứng minh tương tự ta có \(a^n+b^n+c^n+d^n\)là hợp số
ai làm đúng mình k cho