Tìm các cặp số nguyên x, y thỏa mãn: (2x+1)(y-5)=12
(các bạn trình bày cách làm nha, đúng mình tick)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có :
x/5-4/y=1/3
4/y=x/5-1/3
4/y=3x/15-5/15
4/y=(3x-5)/15
Suy ra
y*(3x-5)=4*15
y*(3x-5)=60
Mà 3x-5 là số lẻ và là số tự nhiên
nên có 3 cặp số tự nhiên thỏa mãn
a) x.y=-21
x.y=-3.7=-7.3
x=-3,-7,3,7
y=7,3,-7,-3
b)(2x-1).(2y+1)=-35
-35=-5.7=-7.5
th1 (2x-1)=-5 suy ra x=(-5+1)/2=-2
(2y+1)=7 suy ra x=(7-1)/2=3
th2 (2x-1)=7 suy ra x= 4
(2y+1)=-5 suy ra x=-3
th3 (2x-1)=5 suy ra x = 3
(2y+1)=-7 suy ra y = -4
th4 (2x-1)=-7 suy ra x= -3
(2y+1)=5 suy ra x=2
bạn không biết làm thì làm sao biết người ta làm đúng hay sai để k
đúng rồi. nếu bn biết câu trả lời thì bạn mới k dc,còn khi bn hỏi ngta mà k thì bn lại ko biết dc.
2\(xy\) + 4\(x\) + y + 2 = 4 + 2
2\(x\).( y + 2) + (y + 2) = 6
(y + 2).(2\(x\) + 1) = 6
Ư(6) = {-6; -3; -2; -1; 1; 2; 3; 6}
Lập bảng ta có:
2\(x+1\) | -6 | -3 | -2 | -1 | 1 | 2 | 3 | 6 |
\(x\) | -\(\dfrac{7}{2}\) | -2 | -\(\dfrac{3}{2}\) | -1 | 0 | \(\dfrac{1}{2}\) | 1 | \(\dfrac{7}{2}\) |
y + 2 | -1 | -2 | -3 | -6 | 6 | 3 | 2 | 1 |
y | -3 | -4 | -5 | -8 | 4 | 1 | 0 | -1 |
Theo bảng trên ta có các cặp (\(x\);y) nguyên thỏa mãn đề bài là:
(\(x\); y) = (-2; -4); (-1; -8); (0; 4); (1; 0)
x+y+ xy = 3
<=> x + xy + y + 1 = 4
<=> x(y+1 ) + y + 1 = 4
<=> ( x+ 1 )(y+1) = 4
4 = 1.4 = 2.2 = 4.1 = -1.-4 = -2.-2 = -4.-1
(+) x+ 1 = 1 và y + 1 = 4
=> x= 0 và y = 3
.........
=> 12 chia hết cho 2x+1
=> 2x+1 thuộc Ư(12)={1;2;3;4;6;12;-1;-2;-3;-4;-6;-12}
mà 2x+1 không chia hết 2
=> 2x+1 thuộc -1;1;-3;3
=> x thuộc -1 ; 0 ; -2 ; 1
Các bạn nhớ tìm cả x và y nhá