Bài 1: a,Tìm số chính phương có 6 chữ số 2007ab
b,Tìm các số tự nhiên k để 2k+24+27 là số chính phương.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: 00< ab<99
suy ra: 200700< ab < 200799
\(447^2\)< 2007ab<\(449^2\)
ab= \(448^2\)
Do đó: 2007ab=200704
Vậy a=0,b=4
Vì \(00\le\overline{ab}\le99\) và \(a,b\inℕ\)
\(\Rightarrow200700\le\overline{2007ab}\le200799\)
\(\Rightarrow447^2\le\overline{2007ab}\le449^2\)
\(\Rightarrow\overline{2007ab}=448^2\)
\(\Rightarrow\overline{2007ab}=200704\)
\(\Rightarrow a=0,b=4\)
10 \(\le\)n \(\le\)99 => 21 < 2n + 1 < 199 và 31 < 3n + 1 < 298
Vì 2n + 1 là số lẻ mà 2n + 1 là số chính phương
=> 2n + 1 thuộc { 25 ; 49 ; 81 ; 121 ; 169 } tương ứng số n thuộc { 12; 24; 40; 60; 84 } ( 1 )
Vì 3n + 1 là số chính phương và 31 < 3n + 1 < 298
=> 3n + 1 thuộc { 49 ; 64 ; 100 ; 121 ; 169 ; 196 ; 256 ; 289 } tương ứng n thuộc { 16 ; 21 ; 33 ; 40 ; 56 ; 65 ; 85 ; 96 } ( 2 )
Từ 1 và 2 => n = 40 thì 2n + 1 và 3n + 1 đều là số chính phương
a. 200704
b. k = 8
Tk mình nha!!!>.<