Tìm số nguyên tố p sao cho:
.\(3p^{^2}+1;24p^2+1\)là các số nguyên tố.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Trả lời :.....................
p = 3.....................
Hk tốt......................
Để 3p + 5 là số nguyên tố
Mà 3p + 5 ≥ 5
=> 3p + 5 là số lẻ
=> 3p là số chẵn
Mà SNT chẵn duy nhất là 2
Vậy P = 2
Trả lời:
Cho p=2
=>3p^2+1, 24p^2+1 là số nguyên tố
p>2
mà p là số nguyên tố
=>p là số lẻ
=>3p^2+1 là số chẵn >2
=>3p^2+1 là hợp số(vô lý)
Vậy p=2
Có \(p\ge2\)và p là số nguyên tố
=> \(3p^2+1\ge13\)
Mà \(3p^2+1\)là số nguyên tố và chỉ có một số nguyên tố chẵn duy nhất là 2
=> \(3p^2+1\)là số nguyên tố lẻ
=> p phải là số nguyên tố chẵn để \(3p^2+1\)là số nguyên tố lẻ
=> \(p=2\)
Vì p là số nguyên tố suy ra p \(\ge\)2 suy ra 3p^2 +1 lớn hơn bằng 13 mà 3p^2+1 là SNTsuy ra 3p^2 +1 lẻ suy ra p chẵn
mà p là số nguyên tố suy ra p =2
Thử lại : 3.2^2 +1 = 13 ( là SNT)
24.2^2+1 = 97 ( là SNT) ( thỏa mãn điều kiện đề bài )
Vậy p = 2
vì p là số nguyên tố suy ra b > 2 suy ra 3p^2+1 lớn hơn bằng 13 mà 3p^2 +1 là SNT suy ra 3p^2 +1 lẻ suy ra p chẵn mà p là số nguyên tố suy ra p=2
thử lại : 3.3^2+1=13 SNT
24.2^2+1=97 STN
vậy p=2
tk nha bạn
thank you bạn
(^_^)
Bạn le anh tu làm đúng và chính xác
Bạn Nuyễn Mai Thi nên làm theo cách bạn ấy
Ai thấy mình nói đúng thì nha
Cảm ơn nhiều
p=2
=>3p^2+1, 24p^2+1 là số nguyên tố
p>2
mà p là snt
=>p là số lẻ
=>3p^2+1 là số chẵn >2
=>3p^2+1 là hợp số(vô lý)
Vậy p=2