Một tứ giác lồi có độ dài bốn cạnh đều là số tự nhiên sao cho tổng ba số bất kì trong chúng chia hết cho số còn lại. Chứng minh rằng tứ giác đó có ít nhất hai cạnh bằng nhau.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta sẽ dùng phản chứng
Gọi 4 cạnh của tứ giác là a , b , c , d ( a,b,c,d \(\inℕ^∗\))
Giả sử không có bất kì 2 cạnh nào bằng nhau
Đặt \(\hept{\begin{cases}x=\frac{b+c+d}{a}\\y=\frac{c+d+a}{b}\\z=\frac{d+a+b}{c}\end{cases}}\left(x;y;z\inℕ^∗\right)\)(Do tổng 3 cạnh bất kì chia hết cho cạnh còn lại)
Theo bất đẳng thức trong tứ giác thì dễ thấy \(x;y;z>1\)
Mà x,y,z là số tự nhiên nên \(x;y;z\ge2\)
Không mất tính tổng quát của bài toán ta giả sử a > b > c > d thì khi đó x < y < z
Ta có : \(\hept{\begin{cases}x\ge2\\y>x\end{cases}}\Rightarrow y\ge3\)
tương tự : \(z\ge4\)
Từ điều giả sử\(\Rightarrow\) \(\hept{\begin{cases}b+c+d\ge2a\\c+d+a\ge3b\\d+a+b\ge4c\end{cases}}\)
Cộng 3 vế vào ta được \(2a+2b+2c+3d\ge2a+3b+4c\)
\(\Rightarrow3d\ge b+2c\)(Vô lí do b > c > d)
Nên điều giả sử là sai
Vậy luôn tồn tại ít nhất 2 cạnh bằng nhau trong tứ giác đó
Giả sử tứ giác ABCD có AD = a, AB = b, BC = c, CD = d không có hai cạnh nào bằng nhau. Ta có thể giả sử a < b < c < d.
Ta có a + b + c > BD + c > d.
Do đó a + b + c + d > 2d hay S > 2d (*)
Ta có: S\(⋮\)a => S = m.a (m\(\in\)N) (1)
S\(⋮\)b => S = n.b (n\(\in\)N) (2)
S\(⋮\)c => S = p.d (p\(\in\)N) (3)
S\(⋮\)d => S = q.d (q\(\in\)N) (4) . Từ (4) và (*) suy ra q.d > 2d => q > 2
Vì a < b < c < d (theo giả sử) nên từ (1), (2), (3) và (4) suy ra m > n > p > q > 2
Do đó q\(\ge\)3; p\(\ge\)4; n\(\ge\)5; m\(\ge\)6
Từ (1), (2), (3), (4) suy ra 1/m = a/S; 1/n = b/S; 1/p = c/S; 1/q = d/S
Ta có: \(\frac{1}{6}+\frac{1}{5}+\frac{1}{4}+\frac{1}{3}\ge\frac{1}{m}+\frac{1}{n}+\frac{1}{p}+\frac{1}{q}=\frac{a+b+c+d}{S}=1\)
hay \(\frac{19}{20}\ge1\)(vô lí)
Vậy tồn tại hai cạnh của tứ giác bằng nhau (đpcm)
Đặt d = (a, b, c, d) thì a = dx; b = dy; c = dz; d = dt với (x, y, z, t) = 1.
Dễ thấy x, y, z, t có tính chất giống như a, b, c, d.
Giả sử không tồn tại 3 số trong x, y, z, t bằng nhau.
Gọi x là số lớn nhất thì x > 1. Nếu x có ước nguyên tố p khác 2 thì p lẻ. Ta thấy \(y^2+z^2⋮xt\Rightarrow y^2+z^2⋮p\). Tương tự \(z^2+t^2⋮p;t^2+y^2⋮p\Rightarrow y^2-z^2⋮p\Rightarrow2y^2⋮p\Rightarrow y⋮p\). Do đó \(x,z,t⋮p\), vô lí.
Do đó x chỉ có ước nguyên tố là 2.
Nếu \(x=2^k\left(k>1\right)\) thì tương tự ta có \(2y^2⋮2^k\Rightarrow y⋮2\). Tương tự z, t chia hết cho 2 (vô lí)
Do đó x = 2.
Giả sử \(x\ge y\ge z\ge t\) thì y = 2; z = t = 1 (Do không có 3 số bằng nhau)
Thử lại ta thấy không thỏa mãn.
Vậy...