K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 3 2023

Ta có C = \(\dfrac{1}{2}+\dfrac{1}{2^2}+\dfrac{1}{2^3}+...+\dfrac{1}{2^{20}}\)

2C = 1 + \(\dfrac{1}{2}+\dfrac{1}{2^2}+...+\dfrac{1}{2^{19}}\)

2C - C = ( 1 + \(\dfrac{1}{2}+\dfrac{1}{2^2}+...+\dfrac{1}{2^{19}}\) ) - ( \(\dfrac{1}{2}+\dfrac{1}{2^2}+\dfrac{1}{2^3}+...+\dfrac{1}{2^{20}}\) )

C = 1 - \(\dfrac{1}{2^{20}}=\dfrac{2^{20}-1}{2^{20}}\)

22 tháng 10 2017

\(A=\dfrac{1}{2}+\left(\dfrac{1}{2}\right)^2+\left(\dfrac{1}{2}\right)^3+\left(\dfrac{1}{2}\right)^4+...+\left(\dfrac{1}{2}\right)^{20}\)

\(A=\dfrac{1}{2}+\dfrac{1}{2^2}+\dfrac{1}{2^3}+\dfrac{1}{2^4}+...+\dfrac{1}{2^{20}}\)

\(2A=1+\dfrac{1}{2}+\dfrac{1}{2^2}+\dfrac{1}{2^3}+...+\dfrac{1}{2^{19}}\)

\(2A-A=\left(1+\dfrac{1}{2}+\dfrac{1}{2^2}+\dfrac{1}{2^3}+...+\dfrac{1}{2^{99}}\right)-\left(\dfrac{1}{2}+\dfrac{1}{2^2}+\dfrac{1}{2^3}+\dfrac{1}{2^4}+...+\dfrac{1}{2^{20}}\right)\)

\(A=1-\dfrac{1}{2^{20}}=\dfrac{2^{20}-1}{2^{20}}\)

Chọn A

a: x+2/5=1/2

=>x=1/2-2/5=5/10-4/10=1/10

b; x-2/5=2/7

=>x=2/7+2/5=10/35+14/35=24/35

c: 3/5-x=1/10

=>x=3/5-1/10=6/10-1/10=5/10=1/2

d: x*3/4=9/20

=>x=9/20:3/4=9/20*4/3=36/60=3/5

e: x:1/7=14

=>x=14*1/7=2

f: =>x+1/4=2/5:1/2=4/5

=>x=4/5-1/4=16/20-5/20=11/20

g: =>x*2/3=9/12+2/3=3/4+2/3=9/12+8/12=17/12

=>x=17/12:2/3=17/12*3/2=51/24=17/8

20 tháng 12 2021

e: \(=\dfrac{5^{30}\cdot3^{20}}{3^{15}\cdot5^{30}}=3^5=243\)

20 tháng 9 2023

a, - \(\dfrac{1}{10}\) + \(\dfrac{2}{5}\)\(x\) + \(\dfrac{7}{20}\) = \(\dfrac{1}{10}\)

              \(\dfrac{2}{5}\)\(x\)            = \(\dfrac{1}{10}\) - \(\dfrac{7}{20}\) + \(\dfrac{1}{10}\)

              \(\dfrac{2}{5}\) \(x\)           = - \(\dfrac{3}{20}\)

                  \(x\)          =  - \(\dfrac{3}{20}\)\(\dfrac{2}{5}\)

                  \(x\)          = - \(\dfrac{3}{8}\)

20 tháng 9 2023

b, \(\dfrac{1}{3}\) +   \(\dfrac{1}{2}\)\(x\) = - \(\dfrac{1}{5}\)

            \(\dfrac{1}{2}\)\(x\) =  - \(\dfrac{1}{5}\) - \(\dfrac{1}{3}\)

             \(\dfrac{1}{2}\)\(x\) = - \(\dfrac{8}{15}\)

                   \(x\) =  \(\dfrac{1}{2}\): (- \(\dfrac{8}{15}\))

                    \(x\) =  - \(\dfrac{15}{16}\)

Giải

Ta có : \(\dfrac{1}{2^2}< \dfrac{1}{1.2};\dfrac{1}{3^2}< \dfrac{1}{2.3};\dfrac{1}{4^2}< \dfrac{1}{3.4};...;\dfrac{1}{20^2}< \dfrac{1}{19.20}\)

\(\Rightarrow\)D < \(\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{19.20}\)

Nhận xét: \(\dfrac{1}{1.2}=1-\dfrac{1}{2};\dfrac{1}{2.3}=\dfrac{1}{2}-\dfrac{1}{3};\dfrac{1}{3.4}=\dfrac{1}{3}-\dfrac{1}{4};...;\dfrac{1}{19.20}=\dfrac{1}{19}-\dfrac{1}{20}\)

\(\Rightarrow\) D< 1- \(\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{19}-\dfrac{1}{20}\)

D< 1 - \(\dfrac{1}{20}\)

D< \(\dfrac{19}{20}\)<1

\(\Rightarrow\)D< 1

Vậy D=\(\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+...+\dfrac{1}{5^2}\)<1

30 tháng 4 2017

A=\(\dfrac{1}{2^2}+\dfrac{1}{4^2}+\dfrac{1}{6^2}+...+\dfrac{1}{100^2}\)

A=\(\dfrac{1}{2^2.1}+\dfrac{1}{2^2.2^2}+\dfrac{1}{3^2.2^2}+...+\dfrac{1}{50^2.2^2}\)

A=\(\dfrac{1}{2^2}\left(1+\dfrac{1}{2^2}+\dfrac{1}{3^2}+...+\dfrac{1}{50^2}\right)\)

\(A=\dfrac{1}{2^2}\left(1+\dfrac{1}{2.2}+\dfrac{1}{3.3}+...+\dfrac{1}{50.50}\right)\)

Ta có :

\(\dfrac{1}{2.2}< \dfrac{1}{1.2};\dfrac{1}{3.3}< \dfrac{1}{2.3};\dfrac{1}{4.4}< \dfrac{1}{3.4};...;\dfrac{1}{50.50}< \dfrac{1}{49.50}\)

\(\Rightarrow A< \dfrac{1}{2^2}\left(1+\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{49.50}\right)\)Nhận xét :

\(\dfrac{1}{1.2}< 1-\dfrac{1}{2};\dfrac{1}{2.3}< \dfrac{1}{2}-\dfrac{1}{3};...;\dfrac{1}{49.50}< \dfrac{1}{49}-\dfrac{1}{50}\)

\(\Rightarrow A< \dfrac{1}{2^2}\left(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{49}-\dfrac{1}{50}\right)\)

A<\(\dfrac{1}{2^2}\left(1-\dfrac{1}{50}\right)\)

A<\(\dfrac{1}{4}.\dfrac{49}{50}\)<1

A<\(\dfrac{49}{200}< \dfrac{1}{2}\)

\(\Rightarrow A< \dfrac{1}{2}\)

24 tháng 7 2023

1/2-2y=9/20

=>2y=1/2-9/20=1/20

=>y=1/20:2=1/40

b,3/5:4/3:y=2+7/10=9/20:y=27/10

=>y=9/20:27/10=1/6

c,y+y*3/2-y*1/2=1/10

=>y(1+3/2-1/2)=1/10

=>2y=1/10

=>y=1/10:2=1/20

a: =11+3/4-6-5/6+4+1/2+1+2/3

=10+9/12-10/12+6/12+8/12

=10+13/12=133/12

b: \(=2+\dfrac{17}{20}-1-\dfrac{11}{15}+2+\dfrac{3}{20}\)

=3-11/15

=34/15

c: \(=\dfrac{31}{7}:\left(\dfrac{7}{5}\cdot\dfrac{31}{7}\right)\)

\(=\dfrac{31}{7}:\dfrac{31}{5}=\dfrac{5}{7}\)

d: \(=\dfrac{29}{8}\cdot\dfrac{36}{29}\cdot\dfrac{15}{23}\cdot\dfrac{23}{5}=\dfrac{9}{2}\cdot3=\dfrac{27}{2}\)