cho nửa đường tròn đường kính AB . Vẽ tiếp tuyến Ax cả nửa dg tròn . lấy điểm M thuộc tiếp tuyến Ax sao cho AM>AB. Từ M vẽ tiếp tuyến MC của (O) a) chứng minh tứ giác AOCM nội tiếp
b) MB cắt nửa (O) tại K ,MO cắt AC tại H . chứng minh góc MHK = góc ACK c) chứng minh AK^2/AM^2+MK/MB=1
d) kẻ CE vg với AB , CE cắt BM tại F . gọi G là trung điểm của CH chứng minh tam giác GFK cân
a: góc MAO+góc MCO=180 độ
=>MAOC nội tiếp
b: góc AKB=1/2*180=90 độ
=>AK vuông góc MB
=>MK*MB=MA^2
MA,MC là tiếp tuyến
=>MA=MC
mà OA=OC
nên OM là trung trực của AC
=>OM vuông góc AC tại H
=>MH*MO=MA^2=MK*MB
=>MH/MB=MK/MO
=>ΔMHK đồng dạng với ΔMBO
=>góc MHK=góc MBO=góc ACK
c: AK^2/AM^2+MK/MB
=MK*KB/MK*MB+MK/MB
=KB/MB+MK/MB=1