K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
26 tháng 3 2023

\(\overrightarrow{AC}=\left(5;-2\right)\)

Gọi \(\overrightarrow{u}=\left(a;b\right)\) là 1 vtcp của d (với a;b không đồng thời bằng 0)

Do d tạo với AC một góc 45 độ

\(\Rightarrow\dfrac{\left|5a-2b\right|}{\sqrt{5^2+2^2}.\sqrt{a^2+b^2}}=cos45^0=\dfrac{1}{\sqrt{2}}\)

\(\Rightarrow2\left(5a-2b\right)^2=29\left(a^2+b^2\right)\)

\(\Rightarrow21a^2-40ab-21b^2=0\)

\(\Rightarrow\left(3a-7b\right)\left(7a+3b\right)=0\)

Chọn \(\left[{}\begin{matrix}\left(a;b\right)=\left(7;3\right)\\\left(a;b\right)=\left(3;-7\right)\end{matrix}\right.\)

\(\Rightarrow d\) nhận (3;-7) hoặc (7;3) là vtpt

\(\Rightarrow\) Phương trình d

26 tháng 3 2023

Anh cho em hỏi 2 câu hỏi sau ạ: 

+) Bước tự chọn tọa độ này chỉ áp dụng cho VTCP và VTPT thôi ạ anh, còn điểm cụ thể như tâm đường tròn chả hạn là không làm theo cách tự chọn được đúng không ạ!

+) Chọn hoành độ a là bao nhiêu cũng được rồi rút b theo a ạ anh 

7 tháng 8 2019

A B → = − 2 ; − 1 A C → = − 3 ; − 2 ⇒ A B → − A C → = − 2 − − 3 ; − 1 − − 2 = 1 ; 1 .

Đáp án B

15 tháng 10 2017

NV
23 tháng 12 2020

Gọi \(M\left(0;m\right)\Rightarrow\left\{{}\begin{matrix}\overrightarrow{AM}=\left(-1;m+2\right)\\\overrightarrow{AB}=\left(-5;7\right)\end{matrix}\right.\)

3 điểm M;A;B thẳng hàng khi:

\(\dfrac{-1}{-5}=\dfrac{m+2}{7}\Rightarrow m=-\dfrac{3}{5}\)

\(\Rightarrow M\left(0;-\dfrac{3}{5}\right)\)

15 tháng 8 2018

12 tháng 12 2018

x I = 2 + 4 2 = 3 y I = − 3 + 7 2 = 2 ⇒ I 3 ; 2 .

Đáp án C

20 tháng 12 2019

x I = 2 + 4 2 = 3 y I = − 3 + 7 2 = 2 ⇒ I 3 ; 2 .

Đáp án C

6 tháng 1 2022

Gọi tọa độ điểm \(M\) là \(M\left(x;y\right).\)

\(\overrightarrow{MA}=\left(1-x;3-y\right);\overrightarrow{MB}=\left(4-x;-y\right);\overrightarrow{MC}=\left(2-x;-5-y\right).\)

Ta có: \(\overrightarrow{MA}+\overrightarrow{MB}-3\overrightarrow{MC}=\overrightarrow{0}.\)

\(\left\{{}\begin{matrix}1-x+4-x-3\left(2-x\right)=0.\\3-y-y-3\left(-5-y\right)=0.\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}-2x+5-6+3x=0.\\3-2y+15+3y=0.\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x-1=0.\\y+18=0.\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=1.\\y=-18.\end{matrix}\right.\) \(\Rightarrow M\left(1;-18\right).\)