K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
25 tháng 3 2023

Lời giải:

$3^{2022}=3^2.3^{2020}=9.3^{2020}< 10.3^{2020}$

25 tháng 3 2023

32022 và 10*32020

32022 = 32020.32= 32020.9

Vì 32020= 32020 và 10>9 

=> 10*32020 > 32020.9

Vậy 32022 < 10*32020

AH
Akai Haruma
Giáo viên
22 tháng 4 2023

Lời giải:
$3^{2022}+3^{2020}-(2^{2020}+2^{2020})$

$=3^{2020}(3^2+1)-2.2^{2020}=10.3^{2020}-2^{2021}$

Ta thấy: $10.3^{2020}\vdots 10$, còn $2^{2021}\not\vdots 10$ nên $10.3^{2020}-2^{2021}\not\vdots 10$ 

Bạn xem lại đề.

21 tháng 4 2023

Trường nào đó?

 

 

`@` `\text {Ans}`

`\downarrow`

`a)`

Ta có: `2020` là lũy thừa bậc chẵn

`=>`\(\left(-3\right)^{2020}=3^{2020}\)

`M = `\(3^{2020}-3^{2020}=0\)

`=> 0 = 0`

`=> M = N`

`b)`

`M =`\(\left(-3\right)^{2021}+3^{2020}\)

`=`\(3^{2020}-3^{2021}\)

Vì \(3^{2021}>3^{2020}\)

`=>`\(3^{2020}-3^{2021}< 0\)

`N = [ (-3)]^0`

`= (-3)^0`

`= 1`

Vì `1 > 0`

`=> M < N.`

`@` `\text {Duynamlvhg}`

a: M=3^2020-3^2020=0

b: M=-3^2021+3^2020=-3^2020(3-1)=-3^2020*2<0

N=[(-3)]^0=1

=>M<N

29 tháng 10 2023

A = 1 + 3 + 3² + ... + 3²⁰²³

⇒ 3A = 3 + 3² + 3³ + ... + 3²⁰²³ + 3²⁰²⁴

⇒ 2A = 3A - A

= (3 + 3² + 3³ + ... + 3²⁰²³ + 3²⁰²⁴) - (1 + 3 + 3² + ... + 3²⁰²³)

= 3²⁰²⁴ - 1

⇒ A = (3²⁰²⁴ - 1) : 2

⇒ A < B

29 tháng 10 2023

 

A=1+3+32+33+34+........+32022+32023

3A=3+32+33+............+32023+32024

3A-A=(3+32+33+..........+32023+32024

9 tháng 1 2024

Bài 1

a) S = 1 + 2 + 2² + 2³ + ... + 2²⁰²³

2S = 2 + 2² + 2³ + 2⁴ + ... + 2²⁰²⁴

S = 2S - S = (2 + 2² + 2³ + ... + 2²⁰²⁴) - (1 + 2 + 2² + 2³)

= 2²⁰²⁴ - 1

b) B = 2²⁰²⁴

B - 1 = 2²⁰²⁴ - 1 = S

B = S + 1

Vậy B > S

NV
9 tháng 1 2024

a,

\(S=1+2+2^2+...+2^{2023}\)

\(2S=2+2^2+2^3+...+2^{2024}\)

\(\Rightarrow S=2^{2024}-1\)

b.

Do \(2^{2024}-1< 2^{2024}\)

\(\Rightarrow S< B\)

2.

\(H=3+3^2+...+3^{2022}\)

\(\Rightarrow3H=3^2+3^3+...+3^{2023}\)

\(\Rightarrow3H-H=3^{2023}-3\)

\(\Rightarrow2H=3^{2023}-3\)

\(\Rightarrow H=\dfrac{3^{2023}-3}{2}\)

`#3107`

\(\left(3^{2021}+3^{2020}\right)\div3^{2020}\\ =3^{2021}\div3^{2020}+3^{2020}\div3^{2020}\\ =3^{2021-2020}+3^{2020-2020}\\ =3+1=4\)

29 tháng 9 2023

giúp đê

DT
24 tháng 10 2023

A = ( 1 + 3^2) + (3^4 + 3^6) + ... + (3^2016 + 3 ^2018 ) + 3 ^ 2020

= 10 + 3^4(1+3^2) + .... + 3^2016.(1+3^2) + 3^2020

= 10.(1+3^4+...+3^2016) + 3^2020

Mà : 3^n có tận cùng là : 1,3,9,7

Do đó 3 ^2020 không chia hết cho 10

Lại có 10.(1+3^4+...+3^2016) chia hết cho 10

=> A không chia hết cho 10

24 tháng 10 2023

A=(1+32)+(34+36)+ ... + (32018+32020)

  =(1+32)+ 34(1+32)+....+32018(1+32)

  =(1+32) (1+34+....+32018)

  =10 (1+34+....+32018) ⋮10 ( do 10 ⋮10)

Vậy A=1+32+34+36+ ... +32020 ⋮ 10 (đpcm)

 

20 tháng 8 2021

2)Ta có: \(2^{332}< 2^{333}=\left(2^3\right)^{111}=8^{111}\)

              \(3^{223}>3^{222}=\left(3^2\right)^{111}=9^{111}\)

Vì \(8^{111}< 9^{111}\) mà \(2^{332}< 8^{111},3^{223}>9^{111}\) nên suy ra \(2^{332}< 3^{223}\)

Vậy \(2^{332}< 3^{223}\)

20 tháng 8 2021

1) \(A=\dfrac{10^{2013}+1}{10^{2014}+1}\Rightarrow10A=\dfrac{10^{2014}+10}{10^{2014}+1}=\dfrac{10^{2014}+1}{10^{2014}+1}+\dfrac{9}{10^{2014}+1}=1+\dfrac{9}{10^{2014}+1}\)

\(B=\dfrac{10^{2014}+1}{10^{2015}+1}\Rightarrow10B=\dfrac{10^{2015}+10}{10^{2015}+1}=\dfrac{10^{2015}+1}{10^{2015}+1}+\dfrac{9}{10^{2015}+1}=1+\dfrac{9}{10^{2015}+1}\)Vì: \(10^{2014}+1< 10^{2015}+1\Rightarrow\dfrac{9}{10^{2014}+1}>\dfrac{9}{10^{2015}+1}\Rightarrow1+\dfrac{9}{10^{2014}+1}>1+\dfrac{9}{10^{2015}+1}\)

Nên suy ra \(10A>10B\Rightarrow A>B\)