K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Phương trình đâu bạn?

5 tháng 5 2021

Cho phương trình: \(x^2-2\left(m-1\right)x+m^2-3m\) = 0 (1) với m là tham số.

a) Thay m=0 vào phương trình (1), ta được:

\(x^2-2\cdot\left(0-1\right)x+0^2-3m=0\)

\(\Leftrightarrow x^2+2x=0\)

\(\Leftrightarrow x\left(x+2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x+2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-2\end{matrix}\right.\)

Vậy: Khi m=0 thì S={0;-2}

5 tháng 5 2021

câu b á

 

3 tháng 7 2021

\(x^2-2\left(2m+1\right)x+4m^2+4m=0\)

Để pt có hai ng pb\(\Leftrightarrow\Delta>0\)

\(\Leftrightarrow4>0\left(lđ\right)\)

\(\Rightarrow\)Pt luôn có hai ng pb với mọi m

\(\left\{{}\begin{matrix}x_1=\dfrac{2\left(2m+1\right)+\sqrt{4}}{2}=2m+2\\x_2=\dfrac{2\left(2m+1\right)-\sqrt{4}}{2}=2m\end{matrix}\right.\)

Có \(\left|x_1-x_2\right|=x_1+x_2\)

\(\Leftrightarrow\left|2m+2-2m\right|=2m+2+2m\)

\(\Leftrightarrow2=4m+2\)

\(\Leftrightarrow m=0\)

Vậy...

3 tháng 7 2021

Tham khảo 

Tìm m để phương trình x2 – 2(2m + 1)x + 4m2 + 4m = 0 

24 tháng 8 2019

Phương trình  x 2  - 6x + m = 0 có hai nghiệm  x 1  và  x 2  nên theo hệ thức Vi-ét ta có:

x 1  +  x 2  =-(-6)/1 = 6

Kết hợp với điều kiện  x 1  –  x 2  =4 ta có hệ phương trình :

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

Áp dụng hệ thức vi-ét vào phương trình  x 2  -6x + m=0 ta có:

x 1 x 2 = m/1 = m . Suy ra : m = 5.1 = 5

Vậy m =5 thì phương trình  x 2  -6x +m=0 có hai nghiệm  x 1  và  x 2  thỏa mãn điều kiện  x 1  –  x 2 =4

23 tháng 6 2021

a) Pt có hai nghiệm trái dấu \(\Leftrightarrow ac< 0\Leftrightarrow m< 0\)

b) Pt có nghiệm khi \(\Delta\ge0\Leftrightarrow36-4m\ge0\Leftrightarrow m\le9\)

Áp dụng hệ thức viet có:

\(\left\{{}\begin{matrix}x_1+x_2=6\left(1\right)\\x_1x_2=m\left(2\right)\end{matrix}\right.\)

Từ (1) kết hợp với điều kiện có:\(\left\{{}\begin{matrix}x_1+x_2=6\\x_1-2x_2=m\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}3x_2=6-m\\x_1+x_2=6\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x_2=\dfrac{6-m}{3}\\x_1=6-x_2=\dfrac{12+m}{3}\end{matrix}\right.\)

\(\Rightarrow x_1x_2=\dfrac{6-m}{3}.\dfrac{12+m}{3}=m\)

\(\Leftrightarrow72-15m-m^2=0\)

\(\Delta=3\sqrt{57}\)

\(\Rightarrow m=\dfrac{-15\pm3\sqrt{57}}{2}\) (thỏa mãn)

Vậy...

23 tháng 6 2021

mình cản ơn

1: Để phương trình có hai nghiệm trái dấu thì m<0

2: Để phương trình có hai nghiệm thì Δ>=0

=>36-4m>=0

=>m<=9

Theo đề, ta có:

\(\left\{{}\begin{matrix}x_1-x_2=4\\x_1+x_2=6\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x_1=5\\x_2=1\end{matrix}\right.\)

Theo đề, ta có: \(x_1x_2=m\)

=>m=5(nhận)

Δ=(2n+2)^2-4(n^2+2)

=4n^2+8n+4-4n^2-8

=8n-4

Để phương trình có hai nghiệm phân biệt thì 8n-4>0

=>n>1/2

x1^3+x2^3=1

=>(x1+x2)^3-3x1x2(x1+x2)=1

=>(2n+2)^3-3(n^2+2)(2n+2)=1

=>8n^3+24n^2+24n+8-3(2n^3+2n^2+4n+4)=1

=>8n^3+24n^2+24n+8-6n^3-6n^2-12n-12-1=0

=>2n^3+18n^2+12n-5=0

=>\(n\in\varnothing\)