K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét ΔAHB vuông tạiH và ΔCAB vuông tại A có

góc B chung

=>ΔAHB đồng dạng với ΔCAB

b: AH=3*4/5=2,4cm

c: ΔABC vuông tại A có HA là đường cao

nên AB^2=BH*BC

12 tháng 5 2022

(Tự vẽ hình)

a) Xét \(\Delta AHB\) và \(\Delta CAB\) có:

\(\widehat{AHB}=\widehat{CAB}=90^0\)

\(\widehat{B}\) chung

\(\Rightarrow\Delta AHB\sim\Delta CAB\) (g.g)

b) Áp dụng định lý Pytago có:

\(BC^2=AB^2+AC^2=8^2+6^2=100\Rightarrow BC=10\left(cm\right)\)

Do \(\Delta AHB\sim\Delta CAB\Rightarrow\left\{{}\begin{matrix}\dfrac{AH}{AC}=\dfrac{AB}{BC}\Rightarrow AH=\dfrac{AB.AC}{BC}=4,8\left(cm\right)\\\dfrac{BH}{AB}=\dfrac{AB}{BC}\Rightarrow BH=\dfrac{AB^2}{BC}=6,4\left(cm\right)\end{matrix}\right.\)

c) Xét \(\Delta AHB\) và \(\Delta CHA\) có:

\(\widehat{AHB}=\widehat{CHA}=90^0\)

\(\widehat{ABH}=\widehat{CAH}\) (cùng phụ \(\widehat{BAH}\))

\(\Rightarrow\Delta AHB\sim\Delta CHA\) (g.g) \(\Rightarrow\dfrac{AH}{BH}=\dfrac{CH}{AH}\Rightarrow AH^2=BH.CH\)

AH
Akai Haruma
Giáo viên
14 tháng 7 2023

Lời giải:

a. Xét tam giác $AHB$ và $CHA$ có:

$\widehat{AHB}=\widehat{CHA}=90^0$

$\widehat{HAB}=\widehat{HCA}$ (cùng phụ với $\widehat{HAC}$)

$\Rightarrow \triangle AHB\sim \triangle CHA$ (g.g)

b.

$BH=\sqrt{AB^2-AH^2}=\sqrt{15^2-12^2}=9$ (cm) 

Từ tam giác đồng dạng phần a suy ra $CH=\frac{AH^2}{BH}=\frac{12^2}{9}=16$ (cm) 

$AC=\sqrt{AH^2+CH^2}=\sqrt{12^2+16^2}=20$ (cm)

AH
Akai Haruma
Giáo viên
15 tháng 7 2023

 

Hình vẽ:

loading...

19 tháng 4 2021

19 tháng 4 2021

a, Áp dụng đinh lí Pytago cho tam giác ABC vuông tại A, AH là đường cao 

AB^2 + AC^2 = BC^2

=> BC^2 = 36 + 64 = 100 => BC = 10 cm 

Vì AD là tia phân giác ^A nên ta có : \(\dfrac{AB}{AC}=\dfrac{BD}{DC}\)

mà DC = BC - BD = 10 - BD 

hay \(\dfrac{6}{8}=\dfrac{BD}{10-BD}\Rightarrow BD=\dfrac{30}{7}\)cm 

=> DC = 10 - BD = 10 - 30/7 = 40/7 cm 

b, Xét tam giác ABC và tam giác AHB ta có : 

^BAC = ^AHB = 900

^B chung 

Vậy tam giác ABC ~ tam giác AHB ( g.g )

 

a: Xét ΔBAC vuông tại A và ΔBHA vuông tại H có

góc B chung

=>ΔBAC đồng dạng với ΔBHA

b: ΔBAC đồng dạng vơi ΔBHA

=>BA/BH=BC/BA

=>BA^2=BH*BC

c: ΔABC vuông tại A có AH là đường cao

nên AH*BC=AB*AC

26 tháng 4 2022

a) Xét \(\Delta HBA\) và \(\Delta ABC\) có:

\(\widehat{BHA}=\widehat{BAC}=90^0\)

\(\widehat{B}\) chung

\(\Rightarrow\Delta HBA\sim\Delta ABC\) (g.g)

b) Áp dụng định lí Pytago ta có:

\(BC^2=AB^2+AC^2=6^2+8^2=100\Rightarrow BC=10\left(cm\right)\)

Do \(\Delta HBA\sim\Delta ABC\Rightarrow\dfrac{AH}{AB}=\dfrac{AC}{BC}\Rightarrow AH=\dfrac{AB.AC}{BC}=\dfrac{6.8}{10}=6,8\left(cm\right)\)

Mặt khác ta cũng có \(\dfrac{BH}{AB}=\dfrac{AB}{BC}\Rightarrow BH=\dfrac{AB^2}{BC}=\dfrac{6^2}{10}=3,6\left(cm\right)\)

29 tháng 3 2023

a.Góc H bằng Góc A, Góc C chung vậy HAC đồng dạng ABC