K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét ΔHBE vuông tại H và ΔFEB vuông tại F có

BE chung

góc HEB=góc FBE

=>ΔHBE=ΔFEB

b: EF+EG

= BH+HD=BD

11 tháng 5 2015

a.tam giác bec à tam giác cân tại e.cmd  góc mbe =45 độ

b.góc abe =abc+mbe =abc+45 =90-acb+45=135-acb

mà kce=135 -acb 

từ 2 điều trên suy ra góc hbe =kce 

cmđ tam giác hbe=kce suy ra góc beh=cek

c)cmđ tam giác eha =eka suy ra góc eah =eak từ đây suy ra ae là tia phân góc a

mình viết hơi tắt nên chổ nào bạn ko hiểu trong bài bạn có thể hỏi mình

22 tháng 3 2019

mình ko biết làm

1) Cho tam giác cân ABC (AB=AC). Trên cạnh BC lấy điểm D, trên tia đối của tia CB lấy điểm E sao cho BD=CE. Các đường thẳng vuông góc với BC kẻ từ D và E cắt AB, AC lần lượt ở M,N. DM=EN, đường thẳng BC cắt MN tại trung điểm I của MN. Chứng minh rằng: đường thẳng vuông góc vs MN tại I luôn đi qua một điểm cố định khi D thay đổi trên cạnh BC.2)Cho tam giác ABC vuông tại A, K là trung điểm của...
Đọc tiếp

1) Cho tam giác cân ABC (AB=AC). Trên cạnh BC lấy điểm D, trên tia đối của tia CB lấy điểm E sao cho BD=CE. Các đường thẳng vuông góc với BC kẻ từ D và E cắt AB, AC lần lượt ở M,N. DM=EN, đường thẳng BC cắt MN tại trung điểm I của MN. Chứng minh rằng: đường thẳng vuông góc vs MN tại I luôn đi qua một điểm cố định khi D thay đổi trên cạnh BC.

2)Cho tam giác ABC vuông tại A, K là trung điểm của cạnh BC. Qua K kẻ đường thẳng vuông góc vs AK, đường này cắt các đường thẳng AB và AC lần lượt ở D và E. Gọi I là trung điểm của DE.
a)Chứng minh rằng: AI vuông góc vs BC
b) Có thể nói DE nhỏ hơn BC được không? Vì sao?

3) Cho tam giác ABC (AB>AC), M là trung điểm của BC. Đường thẳng đi qua M và vuông góc vs tia phân giác của góc A tại H cắt hai tia AB, AC lần lượt tại E và F. CMR:
a) EF^2/4 +AH^2=AE^2
b) 2BME=ACB-B
c) BE=CF
4)Cho tam giác ABC có góc B và C là 2 góc nhọn. Trên tia đối của tia AB lấy điểm D sao cho AD=AB, trên tia đối của tia AC lấy điểm E sao cho AE=AC. M là trung điểm của BE, N là trung điểm CB. Ax là tia bất kỳ nằm gưac 2 tia AB và AC. Gọi H, K lần lượt là hình chiếu của B và C trên tia Ax. Xác định vị trí của tia Ax để tổng BH+CK có giá trị lớn nhất.

5)Cho tam giác ABC có 3 góc nhọn, đường cao AH, ở miền ngoài của tam giác ABC ta vẽ các tam giác vuông cân ABE và ACF đều nhận A làm đỉnh góc vuông. Kẻ EM, FN cùng vuông
góc vs AH (M,N thuộc AH)
a) CM: EM+HC=NH
b) CM: EN // FM

3
13 tháng 7 2015

bạn đăng từng bài lên 1 đi

mik giải dần cho

30 tháng 1 2017

dễ mà bn

29 tháng 11 2023

a) Để chứng minh ABDC là hình chữ nhật, ta cần chứng minh rằng các cạnh đối diện của nó bằng nhau và các góc trong của nó bằng 90 độ.

 

Ta có:

- AM là trung tuyến của tam giác ABC, nên AM = MC.

- AM = MD (theo giả thiết), nên MD = MC.

- AH là đường cao của tam giác ABC, nên góc AMH = 90 độ.

 

Vậy ta có AM = MC, MD = MC và góc AMH = 90 độ.

 

Từ đó, ta có thể kết luận rằng ABDC là hình chữ nhật với các cạnh đối diện bằng nhau và các góc trong bằng 90 độ.

 

b) Để chứng minh AEHF là hình vuông, ta cần chứng minh rằng các cạnh của nó bằng nhau và các góc trong của nó bằng 90 độ.

 

Ta có:

- AE là chân đường vuông góc từ H xuống AB, nên góc AEH = 90 độ.

- AF là chân đường vuông góc từ H xuống AC, nên góc AFH = 90 độ.

- AH là đường cao của tam giác ABC, nên góc AMH = 90 độ.

 

Vậy ta có góc AEH = góc AFH = góc AMH = 90 độ.

 

Từ đó, ta có thể kết luận rằng AEHF là hình vuông với các cạnh bằng nhau và các góc trong bằng 90 độ.

 

c) Để chứng minh EF vuông góc với AM, ta cần chứng minh rằng góc giữa EF và AM bằng 90 độ.

 

Ta có:

- AE là chân đường vuông góc từ H xuống AB, nên góc AEH = 90 độ.

- AF là chân đường vuông góc từ H xuống AC, nên góc AFH = 90 độ.

 

Vậy ta có góc AEH = góc AFH = 90 độ.

 

Do đó, EF song song với AB (do AE và AF là các đường vuông góc với AB và AC), và vì AM là trung tuyến của tam giác ABC, nên EF vuông góc với AM.

 

Từ đó, ta có thể kết luận rằng EF vuông góc với AM.

BH=CK=căn 10^2-6^2=8cm

DF//KC

=>DF/KC= BD/BC

=>DF=BD/BC*8

DE//BH

=>DE/BH=CD/CB

=>DE=CD/CB*8

=>DF+DE=8