K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 1 2021

Bất đẳng thức cần chứng minh tương đương:

\(a^{10}b^2+b^{10}a^2\ge a^8b^4+b^8a^4\)

\(\Leftrightarrow a^8+b^8\ge a^6b^2+b^6a^2\) (Do \(a^2b^2\ge0\))

\(\Leftrightarrow\left(a^6-b^6\right)\left(a^2-b^2\right)\ge0\)

\(\Leftrightarrow\left(a^2-b^2\right)^2\left(a^4+a^2b^2+b^4\right)\ge0\) (luôn đúng).

Vậy ta có đpcm.

 

15 tháng 1 2021

bạn trình bày rõ ra vì sao lại có suy ra thứ 2 vậy. Giải thik cho mk đc ko Sigma CTV

11 tháng 9 2020

a2 + b2 + 4 ≥ ab + 2( a + b )

Nhân 2 vào từng vế của bất đẳng thức

<=> 2( a2 + b2 + 4 ) ≥ 2[ ab + 2( a + b ) ] 

<=> 2a2 + 2b2 + 8 ≥ 2ab + 4( a + b ) 

<=> 2a2 + 2b2 + 8 ≥ 2ab + 4a + 4b

<=> 2a2 + 2b2 + 8 - 2ab - 4a - 4b ≥ 0

<=> ( a2 - 2ab + b2 ) + ( a2 - 4a + 4 ) + ( b2 - 4b + 4 ) ≥ 0

<=> ( a - b )2 + ( a - 2 )2 + ( b - 2 )2 ≥ 0 ( đúng )

=> đpcm 

Đẳng thức xảy ra <=> \(\hept{\begin{cases}a-b=0\\a-2=0\\b-2=0\end{cases}}\Leftrightarrow a=b=2\)

11 tháng 9 2020

\(a^2+b^2+4\ge ab+2\left(a+b\right)\)

Áp dụng bất đẳng thức \(x^2+y^2+z^2\ge xy+yz+zx\left(\forall x,y,z\in R\right)\)

=> đpcm

18 tháng 7 2017

\(a^2+b^2+c^2+\frac{3}{4}\ge-a-b-c\)

\(\Leftrightarrow a^2+b^2+c^2+\frac{3}{4}+a+b+c\ge0\)

\(\Leftrightarrow\left(a^2+a+\frac{1}{4}\right)+\left(b^2+b+\frac{1}{4}\right)+\left(c^2+c+\frac{1}{4}\right)\ge0\)

\(\Leftrightarrow\left(a+\frac{1}{2}\right)^2+\left(b+\frac{1}{2}\right)^2+\left(c+\frac{1}{2}\right)^2\ge0\) (luôn đúng)

Vậy \(a^2+b^2+c^2+\frac{3}{4}\ge-a-b-c\)

b ) chuyển vế tương tự

19 tháng 3 2019

lại đây nào , hằng đẳng thức quen thuộc của chúng ta ơi: \(a^2+b^2+c^2\ge ab+bc+ca\)( cái này dễ chứng minh nha bạn, bạn có thể nhân hai vế với 2 hoặc tra mạng là có ngay nha). và chúng ta sẽ áp dụng công thức này vào biểu thức bên dưới

\(a^4+b^4+c^4=\left(a^2\right)^2+\left(b^2\right)^2+\left(c^2\right)^2\) \(\ge a^2b^2+b^2c^2+c^2a^2\ge ab^2c+abc^2+a^2bc\)\(=abc\left(a+b+c\right)\)

từ đẳng thức ta có đpcm 

\(a^8+b^8+c^8=\left(a^4\right)^2+\left(b^4\right)^2+\left(c^4\right)^2\)\(\ge a^4b^4+b^4c^4+c^4a^4\ge a^2b^4c^2+a^2b^2c^4\)\(+a^4b^2c^2\)

\(=a^2b^2c^2\left(b^2+c^2+a^2\right)\)\(\ge a^2b^2c^2\left(ab+bc+ca\right)\)

từ đẳng thức ta có đpcm

trong suốt quá trình giải bài toán mình đều sử dụng công thức bên trên nhé. chúc bạn học tốt. kb và tk mk

19 tháng 4 2018

\(a^2+\dfrac{b^2}{4}\ge ab\)

\(\Leftrightarrow a^2-2\cdot\dfrac{1}{2}\cdot a\cdot b+\left(\dfrac{1}{2}b\right)^2\ge0\)

\(\Leftrightarrow\left(a-\dfrac{1}{2}b\right)^2\ge0\)(luôn đúng)

4 tháng 5 2018

Áp dụng bđt cô-si có:

\(a^2+\dfrac{b^2}{4}\ge2\sqrt{\dfrac{a^2b^2}{4}}=2\cdot\dfrac{ab}{2}=ab\left(đpcm\right)\)

9 tháng 3 2019

(a^2+b^2)/2>=ab

<=>(a^2+b^2)>=2ab

 <=> a^2+2ab+b^2>=2ab 

<=>a^2+b^2>=0(luôn đúng)

=> điều phải chứng minh.

9 tháng 3 2019

Xét hiệu:  \(a^2+b^2-2ab=\left(a-b\right)^2\ge0\)

=>  \(a^2+b^2\ge2ab\)

Dấu "=" xra  <=>  a = b

Áp dụng ta có:

a)  \(\left(a^2+1\right)\left(b^2+1\right)\left(c^2+1\right)\ge2a.2b.2c=8abc\)

dấu "=" xra  <=>  a = b = c = 1

b)  \(\left(a^2+4\right)\left(b^2+4\right)\left(c^2+4\right)\left(d^2+4\right)\ge4a.4b.4c.4d=256abcd\)

Dấu "=" xra  <=>  a = b= c = d = 2

14 tháng 1 2018

Làm thông thường thoy; khai triển ra xog chuyển vế

\(\left(a^2+b^2\right)\left(a^4+b^4\right)\ge\left(a^3+b^3\right)^2\)

\(\Leftrightarrow a^6+a^2b^4+a^4b^2+b^6\ge a^6+2a^3b^3+b^6\)

\(\Leftrightarrow a^2b^4+a^4b^2\ge2a^3b^3\)

\(\Leftrightarrow a^2b^4+a^4b^2-2a^3b^3\ge0\)

\(\Leftrightarrow a^2b^2\left(a^2-2ab+b^2\right)\ge0\)

\(\Leftrightarrow a^2b^2\left(a-b\right)^2\ge0\) (luôn đúng \(\forall a;b\in R\))

Vậy bđt đã đc chứng minh

14 tháng 1 2018

cảm ơn nhiều nha. chúng ta kết bạn được không?