K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét ΔCEB vuông tại E và ΔABC vuông tại B có

góc C chung

=>ΔECB đồng dạng với ΔBCA

b: \(AC=\sqrt{25^2+20^2}=5\sqrt{41}\left(cm\right)\)

\(BE=\dfrac{25\cdot20}{5\sqrt{41}}=\dfrac{100}{\sqrt{41}}\left(cm\right)\)

a: Xét ΔCDA vuông tại D và ΔCEB vuông tại E có

góc C chung

Do đó: ΔCDA\(\sim\)ΔCEB

b: Xét ΔHEA vuông tại E và ΔHDB vuông tại D có 

\(\widehat{AHE}=\widehat{BHD}\)

Do đó: ΔHEA\(\sim\)ΔHDB

Suy ra: HE/HD=HA/HB

hay \(HE\cdot HB=HD\cdot HA\)

6 tháng 4 2021

a, ta có √(92+122)=15 nên theo định lý đảo của định lý pitago => ∠BAC=90 độ

Xét △ADB và △CAB có:

∠BAC=∠BDA(=90 độ), ∠ACB chung => △ADB ∼ △CAB (g.g) (1)

b, BE là đường phân giác của △ABC => \(\dfrac{AB}{AE}=\dfrac{BC}{EC}\)

Gọi AE= x (cm) => EC=12-x (cm)

Ta có: \(\dfrac{9}{x}=\dfrac{15}{12-x}\)=> 108-9x=15x =>108=24x => x=4,5 

Vậy EA=4,5 cm, EC=12-4,5=7,5 cm

c, Xét △CAB và △CDA có:

∠BCD chung, ∠ADC=∠BAC(=90 độ) => △CAB ∼ △CDA (g.g) (2)

Từ (1),(2) => △ADB ∼ △CDA (T/c bắc cầu)

=> \(\dfrac{AD}{CD}=\dfrac{DB}{AD}\) => AD2=BD.DC

d, SABC=\(\dfrac{1}{2}.AB.AC\)=\(\dfrac{1}{2}AD.BC\)

=> AB.AC=AD.BC => AD = \(\dfrac{9.12}{15}\)=7,2 cm

Áp dụng định lí Pitago vào △ADC vuông tại D:

AC2=AD2+DC2 => DC=√[122-(7,2)2]=9,6 cm

=> BD=BC-DC=15-9,6=5,4 cm

BI là đường phân giác của △ABD => \(\dfrac{AB}{AI}=\dfrac{BD}{DI}\)

Gọi ID=y (cm) => AI=7,2-y (cm)

Ta có: \(\dfrac{9}{7,2-y}=\dfrac{5,4}{y}\)=> 9y=38,88-5,4y => 14,4y=38,88 => y = 2,7

Nên ID=2,7 cm

 

 

 

6 tháng 4 2021

undefined

a: Xét tứ giác BFEC có

góc BFC=góc BEC=90 độ

=>BFEC nội tiếp

=>góc BFE+góc BCE=180 độ

=>góc AFE=góc ACB

mà góc FAE chung

nên ΔAFE đồng dạng với ΔACB

b: Xét tứ giác BFHD có

góc BFH+goc BDH=180 độ

=>BFHD là tứ giác nội tiếp

Xét tứ giác CEHD có

góc CEH+góc CDH=180 độ

=>CEHD là tứ giác nội tiếp

góc FDH=góc FBH

góc EDH=góc ACF

mà góc FBH=góc ACF

nên góc FDH=góc EDH

=>DH là phân giác của góc FDE(1)

góc EFH=góc CAD

góc DFH=góc EBC

mà góc CAD=góc EBC

nên góc EFH=góc DFH

=>FH là phân giác của góc EFD(2)

Từ (1), (2) suy ra H là giao của ba đường phân giác của ΔDEF

c: Xét ΔBHD vuông tại D và ΔBCE vuông tại E có

góc HBD chung

=>ΔBHD đồg dạng với ΔBCE

=>BH/BC=BD/BE

=>BH*BE=BC*BD

Xét ΔCDH vuông tại Dvà ΔCFB vuông tại F có

góc FCB chung

=>ΔCDH đồng dạng với ΔCFB

=>CD/CF=CH/CB

=>CD*CB=CH*CF
=>BH*BE+CH*CF=BC^2

12 tháng 4 2023

a: Xet ΔBAE vuông tại A và ΔBDF vuông tại D có

góc ABE=góc DBF

=>ΔBAE đồng dạng với ΔBDF

b: ΔABC vuông tại A có AD là đườg cao

nên BA^2=BD*BC

c: FD/FA=BD/BA

AE/CE=BA/BC

mà BD/BA=BA/BC

nên FD/FA=AE/CE

 

a: Xét ΔHBA vuông tại H và ΔABC vuông tại A có

góc B chung

=>ΔHBA đồng dạng với ΔABC

b: \(BC=\sqrt{6^2+8^2}=10\left(cm\right)\)

AH=6*8/10=4,8cm

BH=6^2/10=3,6cm

Hỏi đáp VietJack

Hỏi đáp VietJack

Hỏi đáp VietJack

Mik copy trên mạng nên cs chút sai sót thì mog bn bỏ qua =)

a: Xét ΔABC vuông tại A và ΔHBA vuông tại H có 

\(\widehat{ABH}\) chung

Do đó: ΔABC\(\sim\)ΔHBA

b: Ta có: ΔABC\(\sim\)ΔHBA

nên \(\dfrac{AB}{HB}=\dfrac{CB}{AB}\)

hay \(AB^2=BH\cdot BC\)

4 tháng 5 2021

Hình tự vẽ nha 

xét tam giác ADB và tam giác ABC có 

\(\widehat{ADB}=\widehat{ABC} (GT)\)

\(\widehat{A} chung\)

=> tam giác ADB đồng dạng vs tam giác ABC (g-g)

=> \(\dfrac{AD}{AB}=\dfrac{AB}{AC} (TSĐD)\)(1)

xét tam giác ABC có 

AE là PG của góc A 

E ∈ BC

=>\(\dfrac{EB}{EC}=\dfrac{AB}{AC} (TC \) tia pg trong tam giác) (2)

từ 1 và 2 =>\(\dfrac{AD}{AB}=\dfrac{EB}{EC}\)

3 tháng 5 2021

có ai ko? giúp mình vs ạ!!!

a: Xét ΔHBA vuông tại H và ΔABC vuông tại A có

góc HBA chung

=>ΔHBA đồng dạng với ΔABC

b; Xét ΔABE vuông tại A và ΔACB vuông tại A có

góc ABE=góc ACB

=>ΔABE đồng dạng với ΔACB

=>AB/AC=AE/AB

=>AB^2=AE*AC

c: Xét ΔBHD vuông tại H và ΔBAE vuông tại A có

góc HBD=góc ABE

=>ΔBHD đồng dạng với ΔBAE