Tìm số nguyên x,y biết : 2xy-x+y=3
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
=> 2x-4xy+2y-3 = 0
=> (2x-4xy)-(1-2y) - 2 = 0
=> 2x.(1-2y)-(1-2y) = 2
=> (1-2y).(2x-1) = 2
Đến đó bạn dùng quan hệ ước bội mà giải nha !
Tk mk nha
Để giải phương trình và tìm các cặp số nguyên , chúng ta có thể sử dụng phương pháp phân tích hệ số.
Đầu tiên, chúng ta có thể nhận thấy rằng phương trình có thể được viết lại dưới dạng:
Bây giờ, chúng ta có thể thử phân tích hệ số bằng cách chia phương trình thành các thành phần nhỏ hơn:
Giờ, chúng ta thấy rằng chúng ta có thể tách phần tử của x và y ra khỏi dấu ngoặc:
Bây giờ, chúng ta cần tìm tất cả các cặp số nguyên sao cho tích của và bằng 4. Cặp số nguyên thỏa mãn điều kiện này bao gồm:
Do đó, các cặp số nguyên thỏa mãn phương trình là:
\(x-2xy+y-3=0\)
\(\Leftrightarrow x-2xy+y=3\)
\(\Leftrightarrow2x-4xy+2y=6\)
\(\Leftrightarrow2x-2y\left(2x-1\right)=6\)
\(\Leftrightarrow\left(2x-1\right)-2y\left(2x-1\right)=5\)
\(\Leftrightarrow\left(2x-1\right)\left(1-2y\right)=5\)
\(\Leftrightarrow\left(2x-1\right)\left(1-2y\right)=1.5=\left(-1\right)\left(-5\right)\)
Nếu \(2x-1=1\) thì \(1-2y=5\) \(\Rightarrow x=1\) thì \(y=-2\)
Nếu \(2x-1=5\) thì \(1-2y=1\) \(\Rightarrow x=3\)thì\(y=0\)
Nếu \(2x-1=-1\) thì \(1-2y=-5\) \(\Rightarrow x=0\)thì\(y=3\)
Nếu \(2x-1=-5\) thì \(1-2y=-1\) \(\Rightarrow x=-2\)thì\(y=1\)
Vậy \(\left(x;y\right)=\left(1;-2\right);\left(-2;1\right);\left(3;0\right);\left(0;3\right)\)
a)ta có :2xy-6=4x-y => 2xy-6-4x+y=0 => 2*(2xy-6-4x+y)=2*0 =>4xy-12-8x+2y=0 => 2x2y-4-8-8x+2y=0 => 2x2y-4-8x+2y=8 =>(2x2y+2y)-(8x+4)=8 =>2y(2x+1)-4(2x+1)=8 => (2y-4)(2x+1)=8 Ta có bảng sau :
2y-4 | 1 | 8 | 2 | 4 | -1 | -8 | -2 | -4 |
2x+1 | 8 | 1 | 4 | 2 | -8 | -1 | -4 | -2 |
y(yϵ\(ℤ\)) | 5/2(loại ) | 6(thỏa mãn) | 3(loại) | 4(loại) | 3/2( loại) | -2(thỏa mãn) | 1( loại) | 0(loại ) |
x(xϵ\(ℤ\)) | 7/2(loại) | 0(thỏa mãn) | 3/2( loại) | 1/2( loại) | -9/2( loại) | -1(thỏa mãn) | -5/2( loại) | -3/2( loại) |
Vậy các cặp nghiệm x,y thỏa mãn là (0;6) và (-1;-2)
\(x-2xy+y-3=0\Leftrightarrow2x-4xy+2y-6=0\Leftrightarrow2x-4xy+2y-1=5\)
\(\Leftrightarrow\left(2x-4xy\right)-\left(1-2y\right)=5\Leftrightarrow2x\left(1-2y\right)-\left(1-2y\right)=5\Leftrightarrow\left(2x-1\right)\left(1-2y\right)=5\)
rồi bạn kẻ bảng xét x;y
\(\Leftrightarrow2x-4xy+2y-3=0\Leftrightarrow4xy-2x-2y+3=0\)
\(\Leftrightarrow2x\left(2y-1\right)-\left(2y-1\right)+2=0\)
\(\Leftrightarrow\left(2x-1\right)\left(2y-1\right)=-2\)
sau đó bạn dùng 2x-1 và 2y-1 là ước của -2 nhé, sẽ tìm được x và y
2xy - x + 2y = 3
x(2y - 1) + 2y = 3
x(2y - 1) + 2y - 1 = 2
<=> (x + 1)(2y - 1) = 2
Vì x ; y là các số nguyên nên x + 1 và 2y - 1 thuộc ước của 2
Ta có Ư(2) = { - 2; - 1; 1; 2 }
Mà 2y - 1 là số nguyên lẻ => 2y - 1 chỉ có thể bằng - 1 hoặc 1
Với 2y - 1 = - 1 thì x + 1 = - 2 => y = 0 thì x = - 3
Với 2y - 1 = 1 thì x + 1 = 2 => y = 1 thì x = 1
Vậy ( x;y ) = { (-3;0) ; (1;1) }
\(2xy-x+2y=3\)
\(\Leftrightarrow\left(2x+2\right)y-x=3\)
\(\Leftrightarrow\left(2x+2\right)y-x-3=0\)
\(\Leftrightarrow2\left(x+1\right)=0\)
\(\Leftrightarrow2x=-2\)
\(\Leftrightarrow\orbr{\begin{cases}x+1\ne0\\y=\frac{x+3}{2\left(x+1\right)}\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x=-3\\y=0\end{cases}};x=y=1\)