K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 5 2021

Bài 5 hình 1: (tự vẽ hình nhé bạn)
a) Xét ΔABD và ΔACB ta có:
\(\widehat{BAD}\)\(\widehat{BAC}\) (góc chung)
\(\widehat{ABD}\)\(\widehat{ACB}\) (gt)
=> ΔABD ~ ΔACB (g-g)
=> \(\dfrac{AB}{AC}\) = \(\dfrac{BD}{CB}\) = \(\dfrac{AD}{AB}\) (tsđd)
b) Ta có: \(\dfrac{AB}{AC}\) = \(\dfrac{AD}{AB}\) (cm a)
=> \(AB^2\) = AD.AC
=> \(2^2\) = AD.4
=> AD = 1 (cm)
Ta có: AC = AD + DC (D thuộc AC)
      => 4   =   1   + DC
      => DC = 3 (cm)
c) Xét ΔABH và ΔADE ta có: 
   \(\widehat{AHB}\) = \(\widehat{AED}\) (=\(90^0\))
   \(\widehat{ADB}\) = \(\widehat{ABH}\) (ΔABD ~ ΔACB)
=> ΔABH ~ ΔADE
=> \(\dfrac{AB}{AD}\) = \(\dfrac{AH}{AE}\) = \(\dfrac{BH}{DE}\) (tsdd)
Ta có: \(\dfrac{S_{ABH}}{S_{ADE}}\) = \(\left(\dfrac{AB}{AD}\right)^2\)\(\left(\dfrac{2}{1}\right)^2\)= 4
=> đpcm

6 tháng 5 2021

Tiếp bài 5 hình 2 (tự vẽ hình)
a) Xét ΔABC vuông tại A ta có:
\(BC^2\) = \(AB^2\) + \(AC^2\)
\(BC^2\) = \(21^2\) + \(28^2\)
BC = 35 (cm)
b) Xét ΔABC và ΔHBA ta có:
\(\widehat{BAC}\) = \(\widehat{AHB}\) ( =\(90^0\))
\(\widehat{ABC}\) = \(\widehat{ABH}\) (góc chung)
=> ΔABC ~ ΔHBA (g-g)
=> \(\dfrac{AB}{BH}\) = \(\dfrac{BC}{AB}\) (tsdd)
=> \(AB^2\) = BH.BC
=> \(21^2\) = 35.BH
=> BH = 12,6 (cm)
c) Xét ΔABC ta có:
BD là đường p/g (gt)
=> \(\dfrac{AD}{DC}\) = \(\dfrac{AB}{BC}\) (t/c đường p/g)
Xét ΔABH ta có: 
BE là đường p/g (gt)
=> \(\dfrac{HE}{AE}\) = \(\dfrac{BH}{AB}\) (t/c đường p/g)
Mà: \(\dfrac{AB}{BC}\) = \(\dfrac{BH}{AB}\) (cm b)
=> đpcm
d) Ta có: \(\left\{{}\begin{matrix}\widehat{HBE}+\widehat{BEH}=90^0\\\widehat{ABD}+\widehat{ADB=90^0}\\\widehat{HBE}=\widehat{ABD}\end{matrix}\right.\)
=> \(\widehat{BEH}=\widehat{ADB}\)
Mà \(\widehat{BEH}=\widehat{AED}\) (2 góc dd)
Nên \(\widehat{ADB}=\widehat{AED}\)
=> đpcm

24 tháng 2 2022

CÒN Ở ĐỌC TIẾP NHÉ 

24 tháng 2 2022

Chu vi vủa tấm tôn là:
 (\(\dfrac{2}{3}\) + \(\dfrac{1}{4}\)) x 2 = \(\dfrac{11}{6}\) (m)
Đáp số: ...

23 tháng 10 2021

\(A+2+2^2+2^3+...+2^{100}\)

\(=\left(2+2^2\right)+2^2\left(2+2^2\right)+...+2^{98}\left(2+2^2\right)\)

\(=6+2^2.6+...+2^{98}.6=6\left(1+2^2+...+2^{98}\right)⋮6\)

23 tháng 10 2021

\(A=2+2^2+2^3+2^4+...+2^{100}\)

\(=2\cdot3+...+2^{99}\cdot3\)

\(=6\left(1+...+2^{99}\right)⋮6\)

23 tháng 11 2021

a) \(P=U.I\Rightarrow I=\dfrac{P}{U}=\dfrac{75}{220}=\dfrac{15}{44}\left(A\right)\)

b) \(A=P.t=75.30.4.60.60=32400000\left(J\right)=9\left(kWh\right)\)

c) Tiền điện phải trả: \(9.2000=18000\left(đồng\right)\)

14 tháng 7 2016

\(2x+69\times2=69\times4\)

      \(2x+138=276\)

                    \(2x=276-138\)

                    \(2x=138\)

                      \(x=138:2\)

                      \(x=69\)

T ủng hộ mk nha ^...^ ^_^

14 tháng 7 2016

2x = 69*4 -69 *2

2x = 69*2

x =(69*2):2

x=69

4 tháng 12 2020

Ta có \(\frac{bz-cy}{a}=\frac{cx-az}{b}=\frac{ay-bx}{c}\)

=> \(\frac{abz-acy}{a^2}=\frac{bcx-baz}{b^2}=\frac{cay-cbx}{c^2}=\frac{abz-acy+bcx-baz+cay-cbx}{a^2+b^2+c^2}\)

                                                                                      \(=\frac{0}{a^2+b^2+c^2}=0\)

=> \(\hept{\begin{cases}bz-cy=0\\cx-az=0\\ay-bx=0\end{cases}}\Rightarrow\hept{\begin{cases}bz=cy\\cx=az\\ay=bx\end{cases}}\Rightarrow\hept{\begin{cases}\frac{z}{c}=\frac{y}{b}\\\frac{z}{c}=\frac{x}{a}\\\frac{y}{b}=\frac{x}{a}\end{cases}}\Rightarrow\frac{x}{a}=\frac{y}{b}=\frac{z}{c}\left(\text{đpcm}\right)\)

1 tháng 3 2018

\(1-\frac{1}{3}-\frac{1}{6}-\frac{1}{12}-\frac{1}{24}\)

\(=1-\frac{1}{3}+\frac{1}{3}-\frac{1}{6}+\frac{1}{6}-\frac{1}{12}+\frac{1}{12}-\frac{1}{24}\)

\(=1-\frac{1}{24}\)

\(=\frac{23}{24}\)

20 tháng 6 2018

Lo hok đi đã bn ơi

R ms yêu đc chứ

20 tháng 6 2018

có hay không chàng trai ấy

người mà tôi tìm kiếm lâu nay

9 tháng 8 2015

Gọi UCLN ( n+ 1 ; n+ 2 ) = d  ( d :  hết cho 1 )

=> n+ 1 chia hết cho d  (1)

=> n +2 chia hết cho d (2)

Từ (1) và (2) => n+ 2  - ( n+  1) chia hết cho d 

=> n+  2 - n - 1 chia hết cho d 

=> 1 chia hết cho d  

mà 1 lại chia hết cho d 

=> d = 1 

=> UCLN(n+1;n+2) = 1 

=> n+1/n+2 là p/s tối giản