cho A Cho tam giác ABC vuông tại A AC = 8 cm BC = 10 cm Lấy hai điểm M và N lần lượt hai cạnh AC và BC sao cho cm = 2 cm CN = 2,5 cm
A.Chứng minh MN song song với BC
b. tính MN
C .qua a kẻ đường thẳng vuông góc BC tại H và cắt MN tại D Chứng minh tam giác AHM đồng dạng với tam giác ACD
D. Chứng minh dm xdn bằng dây a nhân VH E Chứng minh DC² = CN x CH + DN x BM
a: Xét ΔCAB có CM/CA=CN/CB
nênMN//AB
b: Xét ΔCAB có MN//AB
nên MN/AB=CM/CA
=>MN/6=1/4
=>MN=1,5cm
c: góc CMD=góc CHD=90 độ
=>CMHD nội tiếp
=>góc AMH=góc ADC
Xét ΔAMH và ΔADC có
góc AMH=góc ADC
góc A chung
=>ΔAMH đồng dạng với ΔADC