K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 4 2017

Chứng minh:4 = 5 
-->Ta có 
-20 = -20 
<=> 25 - 45 = 16 - 36 
=> 5^2 - 2.5.9/ 2 = 4^2 - 2.4.9/2 
Cộg cả 2 vế với (9/2)^2 để xuất hiện hằg đẳg thức : 
5^2 - 2.5.9/2 + (9/2)^2 = 4^2 - 2.4.9/2 + (9/2)^2 
<=> (5 - 9/2)^2 = (4 - 9/2 )^2 
=> 5 - 9/2 = 4 - 9/2 
=> 5 = 4 

11 tháng 4 2017

Chứng minh:4 = 5 
-->Ta có 
-20 = -20 
<=> 25 - 45 = 16 - 36 
=> 5^2 - 2.5.9/ 2 = 4^2 - 2.4.9/2 
Cộg cả 2 vế với (9/2)^2 để xuất hiện hằg đẳg thức : 
5^2 - 2.5.9/2 + (9/2)^2 = 4^2 - 2.4.9/2 + (9/2)^2 
<=> (5 - 9/2)^2 = (4 - 9/2 )^2 
=> 5 - 9/2 = 4 - 9/2 
=> 5 = 4 

tích nhe =))

-->Ta có 
-20 = -20 
<=> 25 - 45 = 16 - 36 
=> 5^2 - 2.5.9/ 2 = 4^2 - 2.4.9/2 
Cộg cả 2 vế với (9/2)^2 để xuất hiện hằg đẳg thức : 
5^2 - 2.5.9/2 + (9/2)^2 = 4^2 - 2.4.9/2 + (9/2)^2 
<=> (5 - 9/2)^2 = (4 - 9/2 )^2 
=> 5 - 9/2 = 4 - 9/2 
=> 5 = 4 

19 tháng 5 2017

mk không biết xin lỗi nhé

1 tháng 3 2016

Đồ ngu! 4 mà lớn hơn 5!

1 tháng 3 2016

duyet minh di ban 

13 tháng 5 2021

`5+5^2+5^3+5^4`

`=5(1+5+5^2+5^3)`

`=5(1+5+25+125)`

`=5(1+25)+5(5+125)`

`=5.26+5.130`

`=130+130.5 vdots 130(đpcm)`

23 tháng 11 2021

Answer:

\(A=4+4^2+4^3+4^4+...+4^{99}\)

\(=\left(4+4^2\right)+\left(4^3+4^4\right)+...+\left(4^{96}+4^{97}\right)+\left(4^{98}+4^{99}\right)\)

\(=1\left(4+4^2\right)+4^2\left(4+4^2\right)+...+4^{95}\left(4+4^2\right)+4^{97}\left(4+4^2\right)\)

\(=1.20+4^2.20+...+4^{95}.20+4^{97}.20\)

\(=20.\left(1+4^2+...+4^{95}+4^{97}\right)\)

\(=5.4\left(1+4^2+...+4^{95}+4^{97}\right)⋮5\)

\(\Rightarrow A⋮5\)

1 tháng 10 2023

Số lượng số hạng:

\(\left(9999-1\right):1+1=9999\) (số hạng)

Tổng dãy số:

\(\left(9999+1\right)\cdot9999:2=49995000\)

Mà 49995000 không phải số chính phương 

Ai làm sai thì mới làm 4 = 5

bạn duyệt cho mình đi rồi mình làm
 

11 tháng 2 2017

Ta có : 1+4+4^2+.............+4^15 có 16 số hạng 

Mà 16 : 2 =8

\(\Rightarrow\)(1+4)+(4^2+4^3)+..............+(4^14+4^15)

\(\Rightarrow\)(1+4)+(1+4).4+...........+(1+4)4^13

\(\Rightarrow\)(1+4)(1+4+......+4^13)

\(\Rightarrow\)5(1+4+.....+4^13)  \(⋮\)5   (ĐPCM)

11 tháng 2 2017

Giải:

Theo đề ta có: 1 + 4 + 4^2 +. . . .+ 4^15 có 16 số hạng

Mà 16 : 2 = 8

=> (1 + 4) + (4^2 + 4^3) +. . . .+(4^14 + 4^15)

=> (1 + 4) + (1 + 4) . 4 +. . . .+ (1 + 4) . 4^13

=> (1 + 4) . (1 + 4+. . . .+ 4 ^13)

=> 5 . (1 +4 +. . . .+ 4^13)   \(⋮\)5 (điều phải chứng minh)

1 tháng 5 2016

\(\frac{1}{4}+\frac{1}{5}+\frac{1}{6}+...+\frac{1}{19}=\left(\frac{1}{4}+\frac{1}{5}+...+\frac{1}{11}\right)+\left(\frac{1}{12}+\frac{1}{13}+...+\frac{1}{19}\right)>\left(\frac{1}{11}+\frac{1}{11}+...+\frac{1}{11}\right)+\left(\frac{1}{19}+\frac{1}{19}+...+\frac{1}{19}\right)=\frac{8}{11}+\frac{8}{19}=\frac{240}{209}>\frac{209}{209}=1\Rightarrow B>1\)