Giải phương trình
\(x^2+\left(\frac{x}{x+1}\right)^2=1\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\Leftrightarrow8\left(x+\frac{1}{x}\right)^2+4\left(x^2+\frac{1}{x^2}\right)\left[\left(x^2+\frac{1}{x^2}\right)-\left(x+\frac{1}{x}\right)^2\right]=\left(x+4\right)^2.ĐKXĐ:x\ne0\)
\(\Leftrightarrow8\left(x+\frac{1}{x}\right)^2+4\left(x^2+\frac{1}{x^2}\right)\left(x^2+\frac{1}{x^2}-x^2-2-\frac{1}{x^2}\right)=\left(x+4\right)^2\)
\(\Leftrightarrow8\left(x+\frac{1}{x}\right)^2-8\left(x^2+\frac{1}{x^2}\right)=\left(x+4\right)^2\)
\(\Leftrightarrow8\left[\left(x+\frac{1}{x}\right)^2-\left(x^2+\frac{1}{x^2}\right)\right]=\left(x+4\right)^2\)
\(\Leftrightarrow8\left(x^2+2+\frac{1}{x^2}-x^2+\frac{1}{x^2}\right)=\left(x+4\right)^2\)
\(\Leftrightarrow16=\left(x+4\right)^2\)
\(\Leftrightarrow x^2+8x+16=16\)
\(\Leftrightarrow x^2+8x=0\)
\(\Leftrightarrow x\left(x+8\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=0\left(l\right)\\x=-8\left(n\right)\end{cases}}\)
V...\(S=\left\{-8\right\}\)
^^
bạn ghi sai đề ở chỗ \(\left(x+\frac{1}{x}\right)^2\)chứ ko phải \(\left(x+\frac{1}{x^2}\right)^2\)nhé
ĐK: x khác 0
Đặt \(x+\frac{1}{x}=a\)\(\Rightarrow\left(x+\frac{1}{x}\right)^2=a^2\Leftrightarrow a^2=x^2+\frac{1}{x^2}+2\cdot x\cdot\frac{1}{x}\Leftrightarrow a^2-2=x^2+\frac{1}{x^2}\)
Có:
\(8\left(x+\frac{1}{x}\right)^2+4\left(x^2+\frac{1}{x^2}\right)^2-4\left(x^2+\frac{1}{x^2}\right)\left(x+\frac{1}{x}\right)^2\)
\(=8a^2+4\left(a^2-2\right)^2-4\left(a^2-2\right)a^2\)
\(=8a^2+4\left(a^4-4a^2+4\right)-4\left(a^4-2a^2\right)\)
\(=8a^2+4a^4-16a^2+16-4a^4+8a^2=16\)
Thay \(8\left(x+\frac{1}{x}\right)^2+4\left(x^2+\frac{1}{x^2}\right)^2-4\left(x^2+\frac{1}{x^2}\right)\left(x+\frac{1}{x}\right)^2=16\)
vào phương trình, ta có: \(\left(x-4\right)^2=16\)
\(\Leftrightarrow\orbr{\begin{cases}x-4=-4\\x-4=4\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=0\\x=8\end{cases}}\)Mà điều kiện x khác 0 nên x=8
Vậy phương trình có nghiệm x=8
\(8\left(x+\frac{1}{x}\right)^2+4\left(x^2+\frac{1}{x^2}\right)\left(x+\frac{1}{x}\right)^2=\left(x+4\right)^2\)
\(\Leftrightarrow4\left(x+\frac{1}{x}\right)^2\left(x^2+\frac{1}{x^2}+2\right)=\left(x+4\right)^2\)
\(\Leftrightarrow4\left(x+\frac{1}{x}\right)^2\left(x+\frac{1}{x}\right)^2=\left(x+4\right)^2\)
\(\Leftrightarrow\orbr{\begin{cases}2\left(x+\frac{1}{x}\right)^2=x+4\\2\left(x+\frac{1}{x}\right)^2=-x-4\end{cases}}\)
Tới đây thì đơn giản rồi làm tiếp nhé:
Bạn nhân lần lượt ra, sau đó rút gọn, sau một hồi sẽ được:
\(\frac{4\left(x^2+1\right)^4}{x^4}=\left(x+4\right)^2\)
\(\Leftrightarrow\frac{4\left(x^2+1\right)^2}{x^2}=x+4\)
Cách giải giống câu này nè bạn: 903926
ĐK: x \(\ne\) -1
Đặt y = x+1
=> x = y - 1
PT tương đương
(y-1)2 + \(\frac{\left(y-1\right)^2}{y^2}\)= 1
<=> y2 - 2y + 1 + 1 - \(\frac{2}{y}\)+ \(\frac{1}{y^2}\)= 1
<=> y2 + \(\frac{1}{y^2}\) - 2(y + \(\frac{1}{y}\)) = -1
Đặt z = y + \(\frac{1}{y}\) (|z| >= 2)
=> z = y2 + \(\frac{1}{y^2}\) + 2
PT tương đương
z2 - 2 - 2z = -1
<=> z2 - 2z - 1 = 0
<=>
z = \(\frac{2-\sqrt{8}}{2}\)(loại vì |z| < 2)
hoặc z = \(\frac{2+\sqrt{8}}{2}\)= 1 +\(\sqrt{2}\)
=> y + \(\frac{1}{y}\) = 1 + \(\sqrt{2}\)
=> y2 - (1 +\(\sqrt{2}\))y + 1 = 0
Giải PT bậc 2 này tìm được 2 nghiệm y.
=> 2 nghiệm x = y - 1.
D = 2\(\sqrt{2}\)-1 > 0
y = \(\frac{\sqrt{2}+1+\sqrt{2\sqrt{2}-1}}{2}\)
hoặc y = \(\frac{\sqrt{2}+1-\sqrt{2\sqrt{2}-1}}{2}\)
=> x = y - 1 = ... \(\approx\)0.883203505913526
Hoặc x = y - 1 = ... \(\approx\)-0.468989943540431
\(x^2+\left(\frac{x}{x+1}\right)^2=1\) Điều kiện xác định \(x\ne-1\)
\(\Leftrightarrow x^2+\left(\frac{x}{x+1}\right)^2-2\frac{x^2}{x+1}+2\frac{x^2}{x+1}=1\)
\(\Leftrightarrow\left(x-\frac{x}{x+1}\right)^2+2\frac{x^2}{x+1}=1\)
Nhận xét \(x-\frac{x}{x+1}=\frac{x^2+x-x}{x+1}=\frac{x^2}{x+1}\)
Từ đó ta có: \(\left(x-\frac{x}{x+1}\right)^2+2\frac{x^2}{x+1}=1\Leftrightarrow\left(x-\frac{x}{x+1}\right)^2+2\left(x-\frac{x}{x+1}\right)=1\)
Đặt \(t=x-\frac{x}{x+1}\) ta có phương trình \(t^2+2t-1=0\Leftrightarrow\orbr{\begin{cases}t=1+\sqrt{2}\\t=1-\sqrt{2}\end{cases}}\)
Với \(t=1+\sqrt{2}\)ta có \(x-\frac{x}{x+1}=1+\sqrt{2}\)\(\Leftrightarrow x^2-\left(1+\sqrt{2}\right)x-\left(1+\sqrt{2}\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x_1=\frac{1+\sqrt{2}+\sqrt{7+6\sqrt{2}}}{2}\\x_1=\frac{1+\sqrt{2}-\sqrt{7+6\sqrt{2}}}{2}\end{cases}}\)
Với \(t=1-\sqrt{2}\) ta có \(x-\frac{x}{x+1}=1-\sqrt{2}\)\(\Leftrightarrow x^2-\left(1-\sqrt{2}\right)x-\left(1-\sqrt{2}\right)=0\)( vô nghiệm).