K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 3 2023

GT ∆ABC cân tại A, AH BC

KL AHB = AHC

loading...  

Xét hai tam giác vuông: ∆AHB và ∆AHC có:

AH chung

AB = AC (∆ABC cân tại A)

⇒ ∆AHB = ∆AHC (cạnh huyền - cạnh góc vuông)

16 tháng 3 2023

loading...

Có `AH⊥BC(GT)=>hat(H_1)=hat(H_2)(=90^0`

`Delta ABC` cân tại `A=>AB=AC`

Xét `Delta AHB` và `Delta AHC` có :

`{:(hat(H_1)=hat(H_2)(=90^0)),(AB=AC(cmt)),(AH-chung):}}`

`=>Delta AHB=Delta AHC(ch-cgv)(đpcm)`

Câu 4: 

a: Xét ΔABH vuông tại H và ΔACH vuông tại H có

AB=AC

AH chung

Do đó: ΔABH=ΔACH

b: Xét ΔAEH vuông tại E và ΔAFH vuông tại F có

AH chung

\(\widehat{EAH}=\widehat{FAH}\)

Do đó: ΔAEH=ΔAFH

Suy ra:HE=HF

11 tháng 3 2023

làm nốt c luôn ik bro

 

3 tháng 1 2018

Tự làm

7 tháng 4 2017

Chứng minh được △ A H B   =   △ A H C  (cạnh huyền - cạnh góc vuông)

a: Xét ΔAHC vuông tại H và ΔAHB vuông tại H có

AB=AC

AH chung

Do đó: ΔAHC=ΔAHB

Suy ra: \(\widehat{AHC}=\widehat{AHB}\)

b: Xét tứ giác BNCM có 

H là trung điểm của BC

H là trung điểm của NM

Do đó: BNCM là hình bình hành

Suy ra: BN//CM

hay BN//AC

10 tháng 4 2020

.  + vì tam giác ABC là tam giác cân

=> AB=AC ( hai cạnh bên bằng nhau)

Lại có: vì góc AHC bằng 90(gt) (1)

            Mà: AHBAHC= 180( hai góc kề bù)

           Từ (1) và (2) ta suy ra:

           AHB= 90và tam giác AHB là tam giác vuông

a) xét tam giác vuông ABH và tam giác ACH:

                  AB= AC ( cmt)

           Và AHBAHC= 90( cmt)

      => tam giác ABH= tam giác ACH( ch-gv)

      Do đó: BH = CH ( hai cạnh tương ứng)

     Vậy: H là trung điểm của BC ( đpcm)

( mình chỉ làm được câu a thoii, sorry bạn nhiều nha) 😍😘

CHÚC BẠN HỌC TỐT NHA!

12 tháng 4 2020

a) Xét \(\Delta AHB\)và \(\Delta AHC\)có :

\(\widehat{AHB}=\widehat{AHC}\left(=90^o\right)\)

\(AB=AC\)\((\Delta ABC\)cân \()\)

AH chung

\(\Rightarrow\Delta AHB=\Delta AHC\left(ch-cgv\right)\)

\(\Rightarrow HB=HC\)( 2 cạnh tương ứng )

\(\Rightarrow\)H là trung điểm của BC

b) Xét \(\Delta MBH\)và \(\Delta NCH\)có :

\(BM=CN\left(gt\right)\)

\(\widehat{B}=\widehat{C}\)\((\Delta ABC\)cân \()\)

\(BH=HC\left(cmt\right)\)

\(\Rightarrow\Delta MBH=\Delta NCH\left(c.g.c\right)\)

\(\Rightarrow\widehat{BMH}=\widehat{CNH}\)( 2 góc tương ứng )

mà \(\widehat{BMH}=90^o\left(gt\right)\)

\(\Rightarrow\widehat{CNH}=90^o\)

\(\Rightarrow HN\perp AC\)

6 tháng 5 2018

â)Ta có :  AB = AC =10 cm (gt)

=> tam giác ABC cân tại A (2 cạnh bên = nhau )

b) Xét tam giác AHB va tam giac AHC ,co : 

\(\widehat{AHB}=\widehat{AHC}=90^O\) ( AH là đường cao ) 

AB =AC =10 cm (gt )

AH là cạnh chung 

Do đo : tam giác AHB =tam giác AHC ( cạnh huyền - cạnh góc vuông ) 

=>\(\widehat{BAH}=\widehat{CAH}\)( hai góc tương ứng ) 

=>AH là tia phân giác của góc A 

c)Vì trong tam giác cân đường phân giác đồng thời là đường trung tuyến của tam giác 

Nên :H là trung điểm của BC

=>BH = CH  = \(\frac{BC}{2}\)=12/2 = 6 cm

6 tháng 5 2018

TRẢ LỜI TIẾP CÂU Ở TRÊN NHA  ( HỒI NÃY BẤM NHẦM GỬI TRẢ LỜI ) 

b) Vì trong tam giác cân đường phân giác đồng thời là đường trung tuyến của tam giác  

Nên : H là trung điểm của BC

=> BH =CH =\(\frac{BC}{2}=\frac{12}{2}=6cm\)

Xét : tam giác BMH và tam giác HCN , co :

 BH = CH = 6cm ( chứng minh trên ) 

\(\widehat{M}=\widehat{N}=90^o\left(gt\right)\)

\(\widehat{B}=\widehat{C}\) (Vì tam giác ABC cân tại A nên hai góc ở đáy = nhau ) 

Do do:tm giác BHM = tam giác HCN

đ) Áp dụng định lý pytago vào tam giác  AHC vuông tại H 

\(AH^2=AC^2-HC^2\) =\(10^2-6^2\)=\(100-36=64\)

=>\(AH=\sqrt{64}=8cm\)  OK CHÚC BẠN HỌC TỐT 

15 tháng 3 2020

Bạn ơi có gải ko đăng lên đi

12 tháng 4 2020

1.a)
Vì AB=AC => Tam giác ABC cân
b)
Vì △ABC cân
=> góc ABC=góc ACB (1)
góc AHC=góc AHB=90 độ (2)
AB=AC (gt) (3)
Từ (1)(2)(3) => △AHB = △AHC (cạnh huyền-góc nhọn)
=> góc BAH = góc CAH
=> AH là tia phân giác của góc A
c) Vì góc ABC = góc ACB
=> góc MBH = góc NCH
góc BMH = góc HNC =90 độ
=> △BHM = △HCN (g.g)
d) Ta có: AH.BC=AB.AC
=> AH.12=10.10
=> AH = 25/3 (cm)