Trên một cạnh của góc xOy khác 180⁰,đặt các đoạn thẳng OA=2,5cm OB=8cm.Trên cạnh thứ hai của góc đó ,đặt các đoạn thẳng OC=4cm OD=5cm A)Chứng minh hai tấm giác OCB và OAD đồng dạng B)Gọi giáo điểm của các cạnh AD và BC là I chứng minh rằng hai tấm giác IAB và ICD có các góc bằng nhau từng cặp
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a:
GT | góc xOy OA=5cm; OB=16cm; OC=8cm; OD=10cm |
KL | ΔOBC đồng dạng với ΔOAD |
b: Xét ΔOCB và ΔOAD có
OC/OA=OB/OD
góc O chung
=>ΔOCB đồng dạng với ΔOAD
Giả sử ∆A'B'C' ∽ ∆ABC, hiệu độ dài tương ứng của A'B' và AB là 12,5.
Ta có: = mà =
=> = => = = = = 6,25 cm
Giả sử ∆A'B'C' ∽ ∆ABC, hiệu độ dài tương ứng của A'B' và AB là 12,5.
Ta có: CABCCA′B′C′CABCCA′B′C′CABCCA′B′C′= 151715171517 mà CABCCA′B′C′CABCCA′B′C′CABCCA′B′C′ = ABA′B′ABA′B′ABA′B′
=> 151715171517 = ABA′B′ABA′B′ABA′B′ => AB15AB15AB15 = A′B′17A′B′17A′B′17 = A′B′−AB17−15A′B′−AB17−15A′B′−AB17−15 = 12.5212.5212.52 = 6,25 cm
a, Ta có :
\(\frac{OA}{OC}=\frac{5}{8};\frac{OB}{OD}=\frac{10}{16}=\frac{5}{8}\)
\(\Rightarrow\frac{OA}{OC}=\frac{OB}{OD}\)
Mà góc O chung nên \(\Delta OCB~\Delta OAD\)( trường hợp 2 )
b, \(\Delta ICD , \Delta IAB\)có :
\(\widehat{CID}=\widehat{AIB}\)( đối đỉnh )
\(\widehat{CDI}=\widehat{IBA} \left(do \Delta OCB~\Delta OAD\right)\)
\(\Rightarrow\widehat{DCI}=\widehat{BAI}\)( tổng 3 góc trong tam giác )
Vậy : Hai tam giác IAB và ICD có các góc = nhau từng đôi 1