\(\dfrac{25}{2-x}=\dfrac{5}{3}\)
giúp mình bài này với
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(E=\dfrac{98:\left(\dfrac{4}{5}\cdot\dfrac{5}{4}\right)}{\dfrac{16}{25}-\dfrac{1}{25}}+\dfrac{\left(\dfrac{27}{25}-\dfrac{2}{25}\right)\cdot\dfrac{7}{4}}{\left(\dfrac{59}{9}-\dfrac{13}{4}\right)\cdot\dfrac{36}{17}}\\ E=\dfrac{98}{\dfrac{3}{5}}+\dfrac{\dfrac{7}{4}}{\dfrac{119}{36}\cdot\dfrac{36}{17}}\\ E=\dfrac{490}{3}+\dfrac{\dfrac{7}{4}}{7}=\dfrac{490}{3}+\dfrac{1}{4}=\dfrac{1963}{12}\)
bạn ơi chỗ kia mik nhìn hơi loạn tí bạn giải thích giúp mik với
\(\Leftrightarrow\left(\dfrac{x-5}{1990}-1\right)+\left(\dfrac{x-15}{1980}-1\right)+\left(\dfrac{x-25}{1970}-1\right)\\ +\left(\dfrac{x-1990}{5}-1\right)+\left(\dfrac{x-1980}{15}-1\right)+\left(\dfrac{x-1970}{25}-1\right)=0\\ \Leftrightarrow\dfrac{x-1995}{1990}+\dfrac{x-1995}{1980}+\dfrac{x-1995}{1970}+\dfrac{x-1995}{5}\\ +\dfrac{n-1995}{15}+\dfrac{n-1995}{25}=0\\ \Rightarrow\left(x-1995\right)\left(\dfrac{1}{1990}+\dfrac{1}{1980}+\dfrac{1}{1970}+\dfrac{1}{5}+\dfrac{1}{15}+\dfrac{1}{25}\right)=0\)
\(\Rightarrow x-1995=0\\ \Rightarrow x=1995\)
Có: \(\dfrac{\left(-3\right)^{10}x15^5}{25^3x\left(-9\right)^7}=\dfrac{3^{10}.\left(3.5\right)^5x}{-\left(3^2\right)^7\left(5^2\right)^3x}\)
\(=\dfrac{3^{15}.5^5x}{-3^{14}.5^6x}\)\(=\dfrac{3^{14}.5^5\left(3x\right)}{3^{14}.5^5\left(-5x\right)}=\dfrac{3x}{-5x}=-\dfrac{3}{5}\)
Vậy...
a) Ta có: \(7\cdot\dfrac{3}{14}-\dfrac{1}{14}\)
\(=\dfrac{3}{2}-\dfrac{1}{14}\)
\(=\dfrac{21}{14}-\dfrac{1}{14}\)
\(=\dfrac{10}{7}\)
b) Ta có: \(\dfrac{3}{2}+\dfrac{7}{4}:\dfrac{5}{2}\)
\(=\dfrac{3}{2}+\dfrac{7}{4}\cdot\dfrac{2}{5}\)
\(=\dfrac{3}{2}+\dfrac{7}{10}\)
\(=\dfrac{15}{10}+\dfrac{7}{10}=\dfrac{22}{10}=\dfrac{11}{5}\)
Lời giải:
\(7\times \frac{3}{14}-\frac{1}{14}=\frac{7\times 3}{14}-\frac{1}{14}=\frac{21}{14}-\frac{1}{14}=\frac{21-1}{14}=\frac{20}{14}=\frac{2\times 10}{2\times 7}=\frac{10}{7}\)
\(\frac{3}{2}+\frac{7}{4}:\frac{5}{2}=\frac{3}{2}+\frac{7}{4}\times \frac{2}{5}=\frac{3}{2}+\frac{7\times 2}{4\times 5}=\frac{3}{2}+\frac{7\times 2}{2\times 2\times 5}\)
\(=\frac{3}{2}+\frac{7}{2\times 5}=\frac{3\times 5}{2\times 5}+\frac{7}{2\times 5}=\frac{3\times 5+7}{2\times 5}=\frac{22}{2\times 5}=\frac{2\times 11}{2\times 5}=\frac{11}{5}\)
\(a,A=\left(\dfrac{x+14\sqrt{x}-5}{x-25}+\dfrac{\sqrt{x}}{\sqrt{x}+5}\right):\dfrac{\sqrt{x}+2}{\sqrt{x}-5}\)
\(\Rightarrow A=\left(\dfrac{x+14\sqrt{x}-5}{\left(\sqrt{x}+5\right)\left(\sqrt{x}-5\right)}+\dfrac{\sqrt{x}\left(\sqrt{x}-5\right)}{\left(\sqrt{x}+5\right)\left(\sqrt{x}-5\right)}\right).\dfrac{\sqrt{x}-5}{\sqrt{x}+2}\)
\(\Rightarrow A=\left(\dfrac{x+14\sqrt{x}-5}{\left(\sqrt{x}+5\right)\left(\sqrt{x}-5\right)}+\dfrac{x-5\sqrt{x}}{\left(\sqrt{x}+5\right)\left(\sqrt{x}-5\right)}\right).\dfrac{\sqrt{x}-5}{\sqrt{x}+2}\)
\(\Rightarrow A=\dfrac{x+14\sqrt{x}-5+x-5\sqrt{x}}{\left(\sqrt{x}+5\right)\left(\sqrt{x}-5\right)}.\dfrac{\sqrt{x}-5}{\sqrt{x}+2}\)
\(\Rightarrow A=\dfrac{2x+9\sqrt{x}-5}{\left(\sqrt{x}+5\right)\left(\sqrt{x}-5\right)}.\dfrac{\sqrt{x}-5}{\sqrt{x}+2}\)
\(\Rightarrow A=\dfrac{2x+10\sqrt{x}-\sqrt{x}-5}{\left(\sqrt{x}+5\right)\left(\sqrt{x}+2\right)}\)
\(\Rightarrow A=\dfrac{2\sqrt{x}\left(\sqrt{x}+5\right)-\left(\sqrt{x}+5\right)}{\left(\sqrt{x}+5\right)\left(\sqrt{x}+2\right)}\)
\(\Rightarrow A=\dfrac{\left(2\sqrt{x}-1\right)\left(\sqrt{x}+5\right)}{\left(\sqrt{x}+5\right)\left(\sqrt{x}+2\right)}\)
\(\Rightarrow A=\dfrac{2\sqrt{x}-1}{\sqrt{x}+2}\)
Ta có: \(\dfrac{a}{b}=\dfrac{3}{5}\)
\(\Leftrightarrow\dfrac{a}{3}=\dfrac{b}{5}\)
Đặt \(\dfrac{a}{3}=\dfrac{b}{5}=k\)
\(\Leftrightarrow\left\{{}\begin{matrix}a=3k\\b=5k\end{matrix}\right.\)
Ta có: \(\dfrac{2a-4b}{a-5b}\)
\(=\dfrac{2\cdot3k-4\cdot5k}{3k-5\cdot5k}=\dfrac{6k-20k}{3k-25k}\)
\(=\dfrac{-14k}{-22k}=\dfrac{7}{11}\)
\(\dfrac{3}{5}\)\(x\) - \(\dfrac{11}{5}\) = \(\dfrac{-3}{14}\) : \(\dfrac{5}{7}\)
\(\dfrac{3}{5}\)\(x\) - \(\dfrac{11}{5}\) = - \(\dfrac{3}{10}\)
\(\dfrac{3}{5}\)\(x\) = - \(\dfrac{3}{10}\) + \(\dfrac{11}{5}\)
\(\dfrac{3}{5}\)\(x\) = \(\dfrac{19}{10}\)
\(x\) = \(\dfrac{19}{10}\) : \(\dfrac{3}{5}\)
\(x\) = \(\dfrac{19}{6}\)
\(\dfrac{3}{5}x-\dfrac{11}{5}=-\dfrac{3}{14}:\dfrac{5}{7}\)
\(\Rightarrow\dfrac{3}{5}x-\dfrac{11}{5}=-\dfrac{3}{14}\cdot\dfrac{7}{5}\)
\(\Rightarrow\dfrac{3}{5}x-\dfrac{11}{5}=-\dfrac{3}{10}\)
\(\Rightarrow\dfrac{3}{5}x=-\dfrac{3}{10}+\dfrac{11}{5}\)
\(\Rightarrow\dfrac{3}{5}x=\dfrac{19}{10}\)
\(\Rightarrow x=\dfrac{19}{10}:\dfrac{3}{5}\)
\(\Rightarrow x=\dfrac{19}{6}\)
\(\dfrac{25}{2-x}=\dfrac{5}{3}\\ \Rightarrow25.3=5.\left(2-x\right)\\ \Rightarrow75=10-5x\\ \Rightarrow-5x=-65\\ \Rightarrow13\)
\(\Rightarrow5x=-65\\ \Rightarrow-13\)
mik sửa lại