Cho tam giác ABc vuông tại A, có AB=15cm, AC=20cm. Phân giác BD.
a) Kẻ Dh vuông góc vs BC tại H. c/m: CH*CB=CD*CA
b) tính diện tích tam giác CHD
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Áp dụng định lí Pi-ta-go vào tam giác ABC
\(BC^2=AB^2+AC^2=15^2+20^2=625\Rightarrow BC=20\left(cm\right)\)
Tam giác ABC có BD là đuognừ phân giác theo tính chất phân giác ta có:
\(\frac{AD}{DC}=\frac{AB}{BC}\) mà theo tính chất dãy tỉ số bằng nhau ta có: \(\frac{AD}{AD+DC}=\frac{AB}{AB+BC}\Leftrightarrow\frac{AD}{AC}=\frac{AB}{15+225}\Leftrightarrow\frac{AD}{20}=\frac{15}{40}\Rightarrow AD=\frac{20\times15}{40}=7,5\left(cm\right)\).
b) Xét Tam giácCHD và Tam giác CAB có
^H = ^A = 90 độ
^C chung
\(\Rightarrow\) Tam giác CHD đồng dạng với tam giácCAB
\(\Rightarrow\frac{HD}{AB}=\frac{CH}{CA}=\frac{CD}{CB}\Rightarrow CH.CB=CD.CA\).
c) Ta có: CD = AC - AD = 20 - 7,5 = 12,5(cm).
Từ tỉ số đồng dạng ở câu b ta có:
\(CH=\frac{CA.CD}{CB}=\frac{20.12,5}{25}=10\left(cm\right).\)
\(HD=\frac{AB.CH}{CA}=\frac{15.10}{20}=7,5\left(cm\right).\)
Vì tam giác HCD vuông tại H nên \(S_{CHD}=\frac{HC.HD}{2}=\frac{10.7,5}{2}=37,5\left(cm^2\right).\)
a. Xét △ABC và △DAB có:
\(\widehat{BAC}=\widehat{ADB}=90^0\).
\(\widehat{DAB}=\widehat{ABC}\) (AD//BC và so le trong).
=>△ABC ∼ △DAB (g-g).
b. Xét △ABC vuông tại A có:
\(BC^2=AB^2+AC^2\) (định lí Py-ta-go).
=>\(BC=\sqrt{AB^2+AC^2}=\sqrt{15^2+20^2}=25\) (cm).
-Ta có: \(\dfrac{AB}{DA}=\dfrac{BC}{AB}\) (△ABC ∼ △DAB)
=>\(DA=\dfrac{AB^2}{BC}=\dfrac{15^2}{25}=9\) (cm).
-Ta có: \(\dfrac{AC}{DB}=\dfrac{BC}{AB}\) (△ABC ∼ △DAB)
=>\(DB=\dfrac{AC.AB}{BC}=\dfrac{15.20}{25}=12\) (cm)
c. Xét △AID có: AD//BC (gt).
=>\(\dfrac{BI}{AI}=\dfrac{BC}{AD}\) (định lí Ta-let).
=>\(\dfrac{AB}{AI}=\dfrac{BC+AD}{AD}\)
=>\(AI=\dfrac{AB.AD}{BC+AD}=\dfrac{15.9}{25+9}\approx4\) (cm).
\(S_{BIC}=S_{ABC}-S_{AIC}=\dfrac{1}{2}AB.AC-\dfrac{1}{2}AI.AC=\dfrac{1}{2}AC\left(AB-AI\right)=\dfrac{1}{2}.20.\left(15-4\right)=110\)(cm2)
a) Xét ` ΔABC` và ` ΔDAB` có:
`hat(BAC) = hat(ADB) = 90^0` (vì `Δ ABC` vuông tại `A` ; `BD ⊥ a ` tại `D`)
`hat(CBA) =hat(BAD)` (vì `a////BC` nên `hat(CBA)` và `hat(BAD)` là 2 góc so le trong)
`=> ΔABC ` $\backsim$ `ΔDAB` (g.g)
Vậy `ΔABC` $\backsim$ `ΔDAB` ( g.g)
b) Áp dụng định lí Py-ta-go cho `ΔABC ` vuông tại `A` ta được:
`BC^2 = AC^2 + AB^2`
`=> BC^2 = 15^2 + 20^2`
`=> BC^2 =625`
`=> BC= 25` (cm) (vì `BC > 0`)
Theo phần a ta có: `ΔABC` $\backsim$ `ΔDAB`
`=> (AB)/(DA) = (AC)/(DB) = (BC)/(AB) = 25/15 = 5/3`
Với `(AB)/(DA) = 5/3 => 15/(DA) = 5/3 => DA = 15 : 5/3 = 9` (cm)
Với `(AC)/(DB) = 5/3 => 20/(DB) =5/3 => DB = 20 : 5/3 = 12` (cm)
Vậy `BC = 20`cm; `DA = 9` cm ; `DB = 12` cm
c) Xét `ΔADI` và `ΔIBC`, theo hệ quả định lí Ta-lét ta có:
`(AI)/(IB) = (AD)/(BC) = 9/20`
`=> (AI)/9 = (IB)/20`
Mà `AI + IB = AB = 15` cm
Áp dụng tính chất dãy tỉ số bằng nhau ta được:
`(AI)/9 = (IB)/20 = (AI +IB)/(9+20) = 15/29`
`=> AI = 15/29 . 9 =135/29` cm
`S_(AIC) = 1/2 . 135/29 .20 =1350/29 ` (`cm^2`)
`S_(ABC) = 1/2 . 15.20 =150` (`cm^2`)
`=> S_(BIC) = 150 -1350/29=3000/29` (`cm^2)`
Vậy `S_(BIC) =3000/29` (`cm^2`)
a: ΔABC vuông tại A
=>\(AB^2+AC^2=BC^2\)
=>\(AC^2=BC^2-AB^2=13^2-12^2=169-144=25\)
=>\(AC=\sqrt{25}=5\left(cm\right)\)
b: XétΔBAC có BD là phân giác
nên \(\dfrac{AD}{BA}=\dfrac{CD}{BC}\)
=>\(\dfrac{AD}{12}=\dfrac{CD}{13}\)
D nằm giữa A và C
=>AD+DC=AC
=>AD+DC=5(cm)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{AD}{12}=\dfrac{CD}{13}=\dfrac{AD+CD}{12+13}=\dfrac{5}{25}=0,2\)
=>\(AD=2\cdot12=2,4\left(cm\right);CD=2\cdot13=2,6\left(cm\right)\)
c: Xét ΔBAD vuông tại A và ΔBHD vuông tại H có
BD chung
\(\widehat{ABD}=\widehat{HBD}\)
Do đó: ΔBAD=ΔBHD
=>DA=DH
mà DA=2,4(cm)
nên DH=2,4(cm)
vào đây xem nha http://olm.vn/hoi-dap/question/86936.html