tìm số tự nhiên a nhỏ nhất sao cho a chia 9 dư 2 ,chia 15 dư 8 ?
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
3: \(\left\{{}\begin{matrix}a-1\in\left\{15;30;45;...\right\}\\a-3\in\left\{4;8;12;...\right\}\end{matrix}\right.\Leftrightarrow a=31\)
Gọi a là số cần tìm.
a chia 6 dư 5 nên a + 1 chia hết cho 6
a chia 5 dư 4 nên a + 1 chia hết cho 5
a chia 4 dư 3 nên a + 1 chia hết cho 4
a chia 3 dư 2 nên a + 1 chia hết cho 3
a chia 2 dư 1 nên a + 1 chia hết cho 2
Vậy a + 1 là một số chia hết cho 6; 5; 4; 3; 2, mà số nhỏ nhất chia hết cho 6; 5; 4; 3; 2 là 60 nên:
a + 1 = 60
a = 60 - 1
a = 59
Số cần tìm là 59
ta có :
a chia 2 ,3,4,5,6,7,8,9,10 dư lần lượt là 1,2,3,4,5,6,7,8,9
=>a+1 chia hết cho 2,3,4,5,6,7,8,9,10
mà a nhỏ nhất nên a+1 nhỏ nhất
=>a+1 thuộc BCNN(2,3,4,5,6,7,8,9,10)
2=2
3=3
4=22
5=5
6=2.3
7=7
8=23
9=32
10=2.5
=>BCNN(2,3,4,5,6,7,8,9,10)=23.32.5.7=2520
=>a+1=2520
=>a=2519
gọi số đó là a
=>8+5:a;13+7:a;15+9:a
=>13:a;21:a;24:a
mà a là số nhỏ nhất
=>a<ưcnn(13,21,24)=2184
gọi số cần tìm là A
Ta có: A chia 15 dư 8
=> A‐8 chia hết cho 15
do 30 chia hết cho 15
=> A ‐ 8 + 30 chia hết cho 15
=> A + 22 chia hết cho 15
mặt khác: A chia 35 dư 13
=> A ‐ 13 chia hết cho 35
do 35 chia hết cho 35
=> A ‐ 15 + 35 chia hết cho 35
=> A + 22 chia hết cho 35
=> A + 22 thuộc BC ﴾15;35﴿.
Mà BCNN ﴾15;35﴿ = 105
=> A + 22 thuộc B ﴾105﴿ = 0;105;210;315;420;525;.......
Do A < 500
=> A+ 22 = 105 => A = 83
=> A + 22 = 210 => A = 188
=> A + 22 = 315 => A = 293
=> A + 22 = 420 => A = 398
a) Tìm số tự nhiên nhỏ nhất sao cho khi chia số đó cho 3,4,5 đều dư 1và chia cho 7 thì không dư
Gọi số đó là x
Ta có: x - 1 ∈ BC(3; 4; 5) = {0; 60; 120; 180; 240; 300; ...}
=> x ∈ {1; 61; 121; 181; 241; 301 ...}
Vì x chia hết cho 7 => x = 301
b) Tìm số tự nhiên a nhỏ nhất sao cho a chia cho 2 dư 1,chia cho 5 dư 1,chia cho 7 dư 3,chia hết cho 9
Ta có: a chia 2 dư 1
a chia 5 dư 1
a chia 7 dư 3
a chia hết cho 9
=> a chia hết cho 3; 6; 9; 10
Ta có: 2 + 1 = 3
6 + 1 = 6
7 + 3 = 10
=> a nhỏ nhất
=> a thuộc BCNN(3; 6; 9; 10)
Ta có: 3 = 3
6 = 2 . 3
9 = 3^2
10 = 2 . 5
=> BCNN(3; 6; 9; 10) = 3^2 . 2 . 5 = 90
=> a = 90
Ta có
a chia 9 dư 2 => a-2 chia hết cho 9 => (a-2+9) = a+7 chia hết cho 9
a chia 15 dư 8 => a-8 chia hết cho 15 => (a-8+15) = a+7 chia hết cho 15
Vì a nhỏ nhất do đó a+7 = BCNN(9;15)
BCNN(9;15)=45
a + 7 = 45 => a = 45-7 = 38
Đáp số 38