K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 3 2017

tui bít câu 2

14 tháng 3 2017

3/ bạn lập bảng xét dấu là sẽ thấy có 4 trường hợp:

TH1: x<(-5/6), khi đó: -(2x+1)+[-(3-4x)]+[-(6x+5)]=2014

                                -2x-1-3+4x-6x-5=2014

                                -4x-9=2014

                                x=-2023/4 ( TM x<-5/6)

TH2: -5/6<=x<=-1/2, khi đó: 2x+1+[-(3-4x)]+[-(6x+5)]=2014

                                         2x+1-3+4x-6x-5=2014

                                         0x-7=2014 ( ko có giá trị x TM pt)

TH3:-1/2<=x<=3/4, khi đó:  2x+1+(3-4x)+[-(6x+5)]=2014

                                        2x+1+3-4x-6x-5=2014

                                        -8x-1=2014

                                        x=-2015/8 ( ko TM -1/2<=x<=3/4 )

TH4: x>3/4; khi đó: 2x+1+3-4x+6x+5=2014

                            4x+9=2014

                             x=2005/4( TM x>3/4)

thế là xong. cái nào TM thì lấy

ghi chú <= là nhỏ hơn hoặc bằng

Câu 1: Giá trị x=... thì biểu thức \(D=\frac{-1}{5}\left(\frac{1}{4}-2x\right)^2-\left|8x-1\right|+2016\) đạt giá trị lớn nhất. Câu 2: Tập hợp giá trị x nguyên thỏa mãn \(\left|2x-7\right|+\left|2x+1\right|\le8\)Câu 3: Giá trị lớn nhất của \(B=3-\sqrt{x^2-25}\)Câu 4: Số phần tử của tập hợp \(\left\{x\in Z\left|x-2\right|\le9\right\}\)Câu 5: Giá trị nhỏ nhất của biểu thức D= \(\frac{-3}{x^2+1}-2\)Câu 6: Có bao nhiêu...
Đọc tiếp

Câu 1: Giá trị x=... thì biểu thức \(D=\frac{-1}{5}\left(\frac{1}{4}-2x\right)^2-\left|8x-1\right|+2016\) đạt giá trị lớn nhất. 

Câu 2: Tập hợp giá trị x nguyên thỏa mãn \(\left|2x-7\right|+\left|2x+1\right|\le8\)

Câu 3: Giá trị lớn nhất của \(B=3-\sqrt{x^2-25}\)

Câu 4: Số phần tử của tập hợp \(\left\{x\in Z\left|x-2\right|\le9\right\}\)

Câu 5: Giá trị nhỏ nhất của biểu thức D= \(\frac{-3}{x^2+1}-2\)

Câu 6: Có bao nhiêu cặp số (x;y) thỏa mãn đẳng thức xy=x+y

Câu 7: Gọi A là tập hợp các số nguyên dương sao cho giá trị của biểu thức: \(\frac{2\sqrt{x}+3}{\sqrt{x}-1}\) là nguyên. Số phần tử của tập hợp A là...

Câu 8: Cho x;y là các số thỏa mãn \(\left(x+6\right)^2+\left|y-7\right|=0\) khi đó x+y=...

Câu 9: Phân số dương tối giản có mẫu khác 1, biết rằng tổng của tử và mẫu số bằng 18, nó có thể viết dưới dạng số thập phân hữu hạn. Có... phân số thỏa mãn 

 

0
4 tháng 6 2016

 x2 + 4x + 7 chia hết cho x + 4 

=> x . ( x + 4 ) + 7 chia hết chi x + 4

Do x . ( x + 4 ) chia hết cho x + 4 nên 7 chia hết cho x + 4

=> x + 4 thuộc { 1 ; -1 ; 7 ; -7 }

=> x thuộc { -3 ; -5 ; 3 ; -11 }

Vậy x thuộc { -3 ; -5 ; 3 ; -11 }

\(A=\frac{3x-4}{2x-3}=\frac{2x-3+x-1}{2x-3}=1+\frac{x-1}{2x-3}\)

Để A có giá trị nguyên thì

\(x-1⋮2x-3\Leftrightarrow2x-2⋮2x-3\)

\(\Rightarrow2x-3-\left(2x-2\right)⋮2x-3\Rightarrow1⋮2x-3\)

\(\orbr{\begin{cases}2x-3=1\\2x-3=-1\end{cases}\Rightarrow}\orbr{\begin{cases}x=2\\x=1\end{cases}}\)

15 tháng 6 2019

Có bạn nào làm được câu b không??

13 tháng 3 2021

\(f\left(x\right)=\left(m-2\right)x^2+2\left(4-3m\right)x+10m-11\le0\)

TH1: \(m=2\)

Bất phương trình tương đương \(-4x+9\le0\Leftrightarrow x\ge\dfrac{9}{4}\)

\(\Rightarrow m=2\) không thỏa mãn yêu cầu bài toán

TH2: \(m>2\)

\(f\left(x\right)\le0\forall x\in\left(x_1;x_2\right)\)

\(\Rightarrow m>2\) không thỏa mãn yêu cầu bài toán

TH3: \(m< 2\)

+) \(\Delta=-m^2+7m-6\le0\Leftrightarrow\left[{}\begin{matrix}m\le1\\m\ge6\end{matrix}\right.\)

\(f\left(x\right)\le0\forall x\in R\Rightarrow f\left(x\right)\le0\forall x< -4\)

Kết hợp điều kiện \(m< 2\) ta được \(m\le1\) thỏa mãn yêu cầu bài toán

+) \(\Delta=-m^2+7m-6>0\Leftrightarrow1< m< 6\)

Yêu cầu bài toán thỏa mãn khi \(f\left(x\right)\) có hai nghiệm phân biệt thỏa mãn \(x_2>x_1\ge-4\)

\(\Leftrightarrow\left\{{}\begin{matrix}\left(m-2\right).f\left(-4\right)\ge0\\\dfrac{3m-4}{m-2}>-4\end{matrix}\right.\)

\(\Rightarrow\) Không tồn tại m thỏa mãn

Vậy \(S=(-\infty;1]\)

Không biết đúng chưa, bài này phức tạp quá.

16 tháng 9 2018

1 Giải :

\(\frac{3x+7}{x-1}\)là phân số <=> x - 1 \(\ne\)0 => x \(\ne\)1

Ta có : \(\frac{3x+7}{x-1}=\frac{3\left(x-1\right)+8}{x-1}=3+\frac{8}{x-1}\)

Để \(\frac{3x+7}{x-1}\)là số nguyên thì 8 \(⋮\)x - 1 => x - 1 \(\in\)Ư(1; -1; 2; -2; 4; -4; 8; -8}

Lập bảng :

x - 1 1 -1 2 -2 4 -4 8 -8
   x 2 0 3 -1 5 -3 9 -7

Vậy x \(\in\){2; 0; 3; -1; 5; -3; 9; -7} thì \(\frac{3x+7}{x-1}\)là số nguyên

16 tháng 9 2018

Đặt \(A=\frac{3x+7}{x-1}\)

Ta có: \(A=\frac{3x+7}{x-1}=\frac{3x-3+10}{x-1}=\frac{3x-3}{x-1}+\frac{10}{x-1}=3+\frac{10}{x-1}\)

Để \(A\in Z\)thì \(\frac{10}{x-1}\in Z\Rightarrow10⋮x-1\Leftrightarrow x-1\in U\left(10\right)=\left\{\pm1;\pm2;\pm5;\pm10\right\}\) 

Ta có bảng sau:

\(x-1\)\(1\)\(-1\)\(2\)\(-2\)\(5\)\(-5\)\(10\)\(-10\)
\(x\)\(2\)\(0\)\(3\)\(-1\)\(6\)\(-4\)\(11\)\(-9\)

Vậy, với \(x\in\left\{-9;-4;-1;0;2;3;6;11\right\}\)thì \(A=\frac{3x+7}{x-1}\in Z\)

2 tháng 5 2018

\(\left(\frac{1}{2}+\frac{3}{4}-\frac{1}{3}\right):\frac{-5}{6}< x< \frac{4}{21}.\frac{4}{7}\)

\(\Rightarrow\left(\frac{6}{12}+\frac{9}{12}-\frac{4}{12}\right):\frac{-10}{12}< x< \frac{16}{147}\)

\(\Rightarrow\frac{11}{12}.\frac{-12}{10}< x< \frac{16}{147}\)

\(\Rightarrow\frac{-11}{10}< x< \frac{16}{147}\)

\(\Rightarrow\frac{-1617}{1470}< x< \frac{16}{1470}\)

\(x=\left\{-1;0\right\}\)