Cho ΔABC có \(\widehat{A}\) = 90°. E là trung điểm của AB.. Đường thẳng vuông góa với AB tại E cắt BC tại F.
a/ CMR: FA=FB
b/ Từ F vẽ FH ⊥ AC ( H ∈ AC ). Chứng minh FH⊥EF.
c/ Chứng minh FH = AE
d/ Chứng minh EH = \(\dfrac{BC}{2}\) ; EH//BC
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có: Đường trung trực của AB cắt BC tại F(gt)
⇒F nằm trên đường trung trực của AB
⇒FA=FB(tính chất đường trung trực của một đoạn thẳng)
b) Ta có: Đường trung trực của AB cắt BC tại F và AB tại E(gt)
⇔FE là đường trung trực của AB
⇔FE⊥AB
Ta có: HF⊥AC(gt)
AB⊥AC(ΔABC vuông tại A)
Do đó: HF//AB(định lí 1 từ vuông góc tới song song)
Ta có: HF//AB(cmt)
FE⊥AB(cmt)
Do đó: HF⊥EF(định lí 2 từ vuông góc tới song song)
c) Xét tứ giác AHFE có
\(\widehat{AHF}=90^0\)(FH⊥AC)
\(\widehat{HAE}=90^0\)(ΔABC vuông tại A)
\(\widehat{FEA}=90^0\)(FE⊥AB)
Do đó: AHFE là hình chữ nhật(dấu hiệu nhận biết hình chữ nhật)
⇒FH=AE(hai cạnh đối trong hình chữ nhật AHFE)
a) Vì EF là đường trung trực của AB nên FA = FB ( Theo định lý về t/c đường trung trực của đoạn thẳng)
b)Vì \(\hept{\begin{cases}EF\perp AB\\AC\perp AB\end{cases}}\Rightarrow EF//AC\)
Vì \(\hept{\begin{cases}EF//AC\\FH\perp Ac\end{cases}}\Rightarrow EF\perp FH\left(đpcm\right)\)
c) Xét \(\Delta AEH\)và \(\Delta HFE\)có:
\(\widehat{AHE}=\widehat{HEF}\)(so le trong)
AF: cạnh chung
\(\widehat{AEH}=\widehat{HFE}\)(so le trong,\( AE//FH\))
Suy ra \(\Delta AEH=\)\(\Delta HFE\left(c-g-c\right)\)
Suy ra FH = AE ( hai cạnh tương ứng)
d) Chứng minh EH là đường trung bình sau đó suy ra đpcm
a: Ta có:F nằm trên đường trung trực của AB\
nên FA=FB
b: Xét tứ giác AEFH có
góc AEF=góc AHF=góc HAE=90 độ
Do đo:AEFH là hình chữ nhật
Suy ra: FH vuông góc với FE
c: ta có: AEFHlà hình chữ nhật
nên FH=AE
a) Xét tam giác AEF và tam giác BEF, có:
AE = BE (Tính chất đường trung trực)
góc AEF = góc BEF = 90o (Tính chất đường trung trực)
EF : cạnh chung
Vậy tam giác AEF = tam giác BEF (c. g. c)
=> AF = BF (2 cạnh tương ứng)
b) Ta có: EF _|_ AE (gt)
AH _|_ AE (gt)
=> EF // AH (Quan hệ từ _|_ -> //) (1)
Lại có: góc AEF = 90o
Mà góc AEF = góc HFE ( Vì 2 góc này ở vị trí trong cùng phía)
Nên: góc HFE = 90o
Hay: FH _|_ EF (đpcm)
c) Ta có: AE _|_ AH (gt)
FH _|_ AH (gt)
=> AE // FH (Quan hệ từ _|_ -> //) (2)
Từ (1), (2) => FH = AE (Quan hệ hai đầu chắn)
d) Ta có: FH = AE (chứng minh câu c)
Mà: BE = AE ( Tính chất đường trung trực)
Nên: FH = BE
Xét tam giác BEF và tam giác HFE, có:
BE = FH (cmt)
góc BEF = góc HFE = 90o
EF: cạnh chung
=> Tam giác BEF = tam giác HFE (c. g. c)
Do đó: BF = HE (2 cạnh tương ứng) (3)
Mk chỉ co thể làm đến đây thôi, các phần còn lại bạn tự làm nhé!
a: Ta có: F nằm trên đương trung trực của AB
nên FA=FB
b: Xét ΔABC có
E là trung điểm của AB
FE//AC
Do đó: F là trung điểm của CB
Xét tứ giác AEFH có góc AEF=góc AHF=góc HAE=90 độ
nên AEFH là hình chữ nhật
Suy ra: FH vuông góc với FE