Cho tam giác có góc A= 45 độVẽ đường cao AH, lấy D sao cho AB là đường trung trực của HD.
a, Tính góc BDA
b, Vẽ Ck vuông góc với BD. CMR: AD=DK
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
nếu như được 5 k mình sẽ trả lời chứ trả lời rùi không ai k cũng như không
a) Vì BA = BD => tam giác BAD cân tại B => góc BDA = góc DAB
b) Trong tam giác vuông ADH có: góc BDA + DAH = 90o
Mà góc CAD + DAB = CAB = 90o
=> góc BDA + DAH = góc CAD + DAB mà góc BDA = góc DAB
=> góc DAH = CAD => AD là phân giác của HAC
c) Xét tam giác vuông AKD và AHD có: Chung cạnh huyền AD; góc DAH = DAK
=> tam giác AKD = AHD ( cạnh huyền - góc nhọn)
=> AK = AH ( 2 cạnh tương ứng)
dCó DC > KC (tam giác KDC vuông, DC là cạnh huyền)
=> DC + BD+ AK > KC + BD + AK
=> BC +AK > AC + BD
=> AB + AC < BC + AH (vì AK=AH, AB = AD)
a.xét tgiac ABD có AB=BD(gt)
nên theo định nghĩa ta có tgiac ABD cân tại B nên => góc BAD=góc BDA
Bạn tự vẽ hình nha
a.
BA = BD (gt)
=> Tam giác BAD cân tại B
=> BAD = BDA
b.
Tam giác HAD vuông tại H có: HAD + BDA = 90
Ta có: KAD + BAD = 90 (2 góc phụ nhau)
mà BAD = BDA (theo câu a)
=> HAD = KAD
=> AD là tia phân giác của HAK
c.
Xét tam giác HAD vuông tại H và tam giác KAD vuông tại K có:
HAD = KAD (AD là tia phân giác của HAK)
AD là cạnh chung
=> Tam giác HAD = Tam giác KAD (cạnh huyền - góc nhọn)
=> AH = AK (2 cạnh tương ứng)
Chúc bạn học tốt
a: Xét tứ giác MHKD có
\(\widehat{MHK}=\widehat{MDK}=\widehat{DKH}=90^0\)
Do đó: MHKD là hình chữ nhật
b: Xét tứ giác ADKB có
\(\widehat{DKB}+\widehat{DAB}=180^0\)
=>ADKB nội tiếp
=>\(\widehat{AKB}=\widehat{ADB}=45^0\)
Xét ΔHAK vuông tại H có \(\widehat{HKA}=45^0\)
nên ΔHAK vuông cân tại H
=>HA=HK