K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 9 2023

Tổng các số trong phương trình là 1, vì vậy ta có: 3a + 2b + c = 1.

Với số tự nhiên a, b và c, ta có thể thử các giá trị để tìm bộ ba số thỏa mãn phương trình.

Ví dụ, ta có thể thử a = 1, b = 1 và c = -4, thì 3a + 2b + c = 3 + 2 + (-4) = 1, phương trình được thỏa mãn.

Vậy, một bộ ba số tự nhiên khác 0 thỏa mãn phương trình đã cho là a = 1, b = 1 và c = -4.

16 tháng 12 2024

có thể coi a=b=c=d từ đó thì ra 2 nghiệm đều thỏa mãn biểu thức là:

x = {-2;2}

Bài 2: 

a) Ta có: \(A=\dfrac{4}{n-1}+\dfrac{6}{n-1}-\dfrac{3}{n-1}\)

\(=\dfrac{4+6-3}{n-1}\)

\(=\dfrac{7}{n-1}\)

Để A là số tự nhiên thì \(7⋮n-1\)

\(\Leftrightarrow n-1\inƯ\left(7\right)\)

\(\Leftrightarrow n-1\in\left\{1;7\right\}\)

hay \(n\in\left\{2;8\right\}\)

Vậy: \(n\in\left\{2;8\right\}\)

27 tháng 3 2021

ta có B=2n+9/n+2-3n+5n+1/n+2=4n+10/n+2                                                   Để B là STN thì 4n+10⋮n+2                          4n+8+2⋮n+2                                  4n+8⋮n+2                                                      ⇒2⋮n+2                                     n+2∈Ư(2)                                                        Ư(2)={1;2}                                  Vậy n=0                                                                                  

NV
26 tháng 8 2021

Đặt \(\left(a;b;c\right)=\left(\dfrac{y}{x};\dfrac{z}{y};\dfrac{x}{z}\right)\)

BĐT trở thành:

\(\dfrac{y^2}{xz}+\dfrac{z^2}{xy}+\dfrac{x^2}{yz}\ge\dfrac{3}{2}\left(\dfrac{y}{x}+\dfrac{z}{y}+\dfrac{x}{z}-1\right)\)

\(\Leftrightarrow2\left(x^3+y^3+z^3\right)+3xyz\ge3x^2y+3y^2z+3z^2x\)

Áp dụng BĐT Schur ta có:

\(x^3+y^3+z^3+3xyz\ge x^2y+y^2z+z^2x+xy^2+yz^2+zx^2\)

\(\Rightarrow VT\ge\left(x^3+xy^2\right)+\left(y^3+yz^2\right)+\left(z^3+zx^2\right)+x^2y+y^2z+z^2x\ge3\left(x^2y+y^2z+z^2x\right)\)

NV
21 tháng 9 2021

\(\Leftrightarrow c-a=\dfrac{b}{a}-\dfrac{1}{b}=\dfrac{b^2-a}{ab}\)

\(\Rightarrow b^2-a=ab\left(c-a\right)\Rightarrow b^2=a\left[b\left(c-a\right)+1\right]\)

\(\Rightarrow b^2⋮b\left(c-a\right)+1\) (1)

Nếu \(b\left(c-a\right)+1\ne1\) , do b và \(b\left(c-a\right)+1\) nguyên tố cùng nhau

\(\Rightarrow b⋮̸b\left(c-a\right)+1\Rightarrow b^2⋮̸b\left(c-a\right)+1\) trái với (1)

\(\Rightarrow b\left(c-a\right)+1=1\Rightarrow c=a\)

\(\Rightarrow b^2=a\Rightarrow ab=b^3\) là lập phương 1 số tự nhiên

26 tháng 10 2021

Sửa \(\le\) thành \(\ge\) nha bạn

\(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=1\Leftrightarrow ab+bc+ca=abc\)

Ta có \(\dfrac{a^2}{a+bc}=\dfrac{a^3}{a^2+abc}=\dfrac{a^3}{a^2+ab+bc+ca}=\dfrac{a^3}{\left(a+b\right)\left(a+c\right)}\)

Tương tự: \(\left\{{}\begin{matrix}\dfrac{b^2}{b+ca}=\dfrac{b^3}{\left(b+a\right)\left(b+c\right)}\\\dfrac{c^2}{c+ba}=\dfrac{c^3}{\left(c+b\right)\left(c+a\right)}\end{matrix}\right.\)

Áp dụng BĐT cosi:

\(\dfrac{a^3}{\left(a+b\right)\left(a+c\right)}+\dfrac{a+b}{8}+\dfrac{a+c}{8}\ge3\sqrt[3]{\dfrac{a^3}{64}}=\dfrac{3}{4}a\)

\(\dfrac{b^3}{\left(b+a\right)\left(b+c\right)}+\dfrac{a+b}{8}+\dfrac{b+c}{8}\ge3\sqrt[3]{\dfrac{b^3}{64}}=\dfrac{3}{4}b\)

\(\dfrac{c^3}{\left(c+b\right)\left(c+a\right)}+\dfrac{b+c}{8}+\dfrac{a+c}{8}\ge3\sqrt[3]{\dfrac{c^3}{64}}=\dfrac{3}{4}c\)

Cộng VTV:

\(\Leftrightarrow VT+\dfrac{a+b}{8}+\dfrac{a+c}{8}+\dfrac{b+c}{8}\ge\dfrac{3}{4}\left(a+b+c\right)\\ \Leftrightarrow VT\ge\dfrac{3\left(a+b+c\right)}{4}-\dfrac{2\left(a+b+c\right)}{8}\\ \Leftrightarrow VT\ge\dfrac{a+b+c}{4}\)

Dấu \("="\Leftrightarrow a=b=c=3\)

AH
Akai Haruma
Giáo viên
6 tháng 1 2024

Lời giải:

\(\frac{1719}{3976}=\frac{1}{2+\frac{538}{1719}}=\frac{1}{2+\frac{1}{3+\frac{105}{538}}}=\frac{1}{2+\frac{1}{3+\frac{1}{5+\frac{13}{105}}}}=\frac{1}{2+\frac{1}{3+\frac{1}{5+\frac{1}{8+\frac{1}{13}}}}}\)

$\Rightarrow a=8; b=13$

NV
6 tháng 1 2024

\(\dfrac{1719}{3976}=\dfrac{1}{\dfrac{3976}{1719}}=\dfrac{1}{2+\dfrac{538}{1719}}=\dfrac{1}{2+\dfrac{1}{\dfrac{1719}{538}}}=\dfrac{1}{2+\dfrac{1}{3+\dfrac{105}{538}}}\)

\(=\dfrac{1}{2+\dfrac{1}{3+\dfrac{1}{\dfrac{538}{105}}}}=\dfrac{1}{2+\dfrac{1}{3+\dfrac{1}{5+\dfrac{13}{105}}}}=\dfrac{1}{2+\dfrac{1}{3+\dfrac{1}{5+\dfrac{1}{\dfrac{105}{13}}}}}\)

\(=\dfrac{1}{2+\dfrac{1}{3+\dfrac{1}{5+\dfrac{1}{8+\dfrac{1}{13}}}}}\)