Cho phân số:P= \(\frac{10n+81}{5n+3}\). Có bao nhiêu số n có 3 chữ số để P tối giản.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Giả sử 5n+2 và 2n+7 cùng chia hết cho một số nguyên tố d(d€ N*)
=>5n+2˙:d;2n+7˙:d
=>2(5n+2)˙:d;5(2n+7)˙:d
=>5(2n+7)-2(5n+2)˙:d
=>10n+35-10n-4˙:d
=>31˙:d=>d=31
=>5n+2˙:31 và 2n+7˙:31
2n+7˙:31=>2n+7-31˙:31
=>2n-24˙:31=>2(n-12)˙:31
=>n-12˙:31(vì 2 và 31 nguyên tố cùng nhau)
=>n-12=31q(q€Z)
=>n=31q+12
=>A là ps tối giản thì n khác31q+12
n là số nguyên dương <2016
=>0<31q+12<2016
=>-12<31q<2004
=>-12/31<q<2004/31
=>0<=q<64,6
=>q nhận 65 gtrị để A là ps tối giản
a) Để \(A=\frac{7}{9}\Leftrightarrow\frac{5n+2}{2n+7}=\frac{7}{9}\)
\(\Leftrightarrow9\left(5n+2\right)=7\left(2n+7\right)\)
\(\Leftrightarrow45n+18=14n+49\)
\(\Leftrightarrow31n=31\)
\(\Leftrightarrow n=1\)
n) Để A nguyên thì \(\frac{5n+2}{2n+7}\in Z\)
Nếu A nguyên thì 2A cũng nguyên. Vậy ta tìm n nguyên để 2A nguyên sau đó thử lại để chọn các giá trị đúng của n.
\(2A=\frac{10n+4}{2n+7}=\frac{5\left(2n+7\right)-31}{2n+7}=5-\frac{31}{2n+7}\)
Để 2A nguyên thì \(2n+7\inƯ\left(31\right)=\left\{\pm1;\pm31\right\}\)
Ta có bảng:
2n + 7 | 1 | -1 | 31 | -31 |
n | -3 | -4 | 12 | -19 |
KL | TM | TM | TM | TM |
Vậy ta có \(n\in\left\{-1;-4;12;-19\right\}\)
c
a) \(\frac{2n+3}{4n+1}\) là phân số tối giản
\(\frac{2n+3}{4n+1}\)= \(\frac{2+3}{4+1}\) =\(\frac{5}{5}\)=1
=>n=1
mình ko chắc là đúng nha
CÓ:P=10n+81/5n+3 = 2(5n+3)+75/5n+3 = 2 + (75/5n+3)
P tối gản khi 75/5n+3 tối giản
Mà 75 chia hết cho 2 số nguyên tố 3 và 5.
Mà 5n+3 không chia hết cho 5 nên P tối giản khi 5n+3 không chia hết cho 7.
Xét:5n+3 chia hết cho 7
=>5n+3+7 chia hết cho 7
=>5n+10 chia hết cho 7
=>5(n+2) chia hết cho 7
=> n+2 chia hết cho 7 (vì (5,7)=1)
=>n+2= 7k (k thuộc N)
=> n=7k-2
hay n=7k+5
Mà 100<=n<=999
=>100<=7k+5<=999
=>95<=7k<=994
=>14<=k<=142
=>k thuộc {14 ;15;16;...;142}
=>n thuộc {103;110;117;...;999}
=>có 129 số n thì P rút gọn được
=>Có:900-129=771 số n thì P tối giản
Vậy có 771 số n có 3 chữ số để P tối giản