Cho đường tròn (O;R) và dây MN cố định. Gọi A là điểm chính giữa của cung lớn MN, đường kính AB cắt MN tại E. Lấy điểm C thuộc MN sao cho C khác M, N, E và BC cắt đường tròn (O;R) ở K. Chứng minh rằng:
a) Tứ giác KAEC nội tiếp
b) \(BM^2\) = BC.BK
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: A là điểm chính giữa của cung lơn MN
=>AM=AN
=>AO là trung trực của MN
=>AB vuông góc MN tại Evà E là trung điểm của MN
góc BKA=1/2*sđ cung AB=90 độ
góc AEC+góc AKC=90+90=180 độ
=>AKCE nội tiếp
b: Xét ΔBMC và ΔBKM có
góc BMC=góc BKM
góc MBC chung
=>ΔBMC đồng dạng với ΔBKM
=>BM/BK=BC/BM
=>BM^2=BK*BC