K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a^2=bc

=>a*a=b/c

=>a/b=c/a=k

=>a=bk; c=ak

\(\dfrac{2022a+2021b}{2023a-2024b}=\dfrac{2022\cdot bk+2021b}{2023\cdot bk-2024b}=\dfrac{2022k+2021}{2023k-2024}\)

\(\dfrac{2022c+2021a}{2023c-2024a}=\dfrac{2022ak+2021a}{2023ak-2024a}=\dfrac{2022k+2021}{2023k-2024}\)

=>\(\dfrac{2022a+2021b}{2023a-2024b}=\dfrac{2022c+2021a}{2023c-2024a}\)

1 tháng 6 2023

Ta có \(\sqrt{2022a+\dfrac{\left(b-c\right)^2}{2}}\) 

\(=\sqrt{2a\left(a+b+c\right)+\dfrac{b^2-2bc+c^2}{2}}\)

\(=\sqrt{\dfrac{4a^2+b^2+c^2+4ab+4ac-2bc}{2}}\)

\(=\sqrt{\dfrac{\left(2a+b+c\right)^2-4bc}{2}}\)

\(\le\sqrt{\dfrac{\left(2a+b+c\right)^2}{2}}\)

\(=\dfrac{2a+b+c}{\sqrt{2}}\).

Vậy \(\sqrt{2022a+\dfrac{\left(b-c\right)^2}{2}}\le\dfrac{2a+b+c}{\sqrt{2}}\). Lập 2 BĐT tương tự rồi cộng vế, ta được \(VT\le\dfrac{2a+b+c+2b+c+a+2c+a+b}{\sqrt{2}}\)

\(=\dfrac{4\left(a+b+c\right)}{\sqrt{2}}\) \(=\dfrac{4.1011}{\sqrt{2}}\) \(=2022\sqrt{2}\)

ĐTXR \(\Leftrightarrow\) \(\left\{{}\begin{matrix}ab=0\\bc=0\\ca=0\\a+b+c=1011\end{matrix}\right.\) \(\Leftrightarrow\left(a;b;c\right)=\left(1011;0;0\right)\) hoặc các hoán vị. Vậy ta có đpcm.

15 tháng 7 2020

\(\sum\frac{a}{a+\sqrt{2021a+bc}}=\sum\frac{a}{a+\sqrt{a\left(a+b+c\right)+bc}}=\sum\frac{a}{a+\sqrt{\left(a+b\right)\left(a+c\right)}}\le_{C-S}\sum\frac{a}{a+\sqrt{\left(\sqrt{ab}+\sqrt{ac}\right)^2}}=\sum\frac{a}{a+\sqrt{ab}+\sqrt{ac}}=\sum\frac{\sqrt{a}}{\sqrt{a}+\sqrt{b}+\sqrt{c}}=1\)

AH
Akai Haruma
Giáo viên
20 tháng 6 2023

Lời giải:

$\frac{2022a+b+c}{a}=\frac{a+2022b+c}{b}=\frac{a+b+2022c}{c}$

$=2021+\frac{a+b+c}{a}=2021+\frac{a+b+c}{b}=2021+\frac{a+b+c}{c}$

$\Rightarrow \frac{a+b+c}{a}=\frac{a+b+c}{b}=\frac{a+b+c}{c}$

$\Rightarrow a+b+c=0$ hoặc $\frac{1}{a}=\frac{1}{b}=\frac{1}{c}$

$\Rightarrow a+b+c=0$ hoặc $a=b=c$

Nếu $a+b+c=0$ thì:

$P=\frac{a+b}{c}+\frac{b+c}{a}+\frac{a+c}{b}=\frac{(-c)}{c}+\frac{(-b)}{b}+\frac{(-a)}{a}=-1+(-1)+(-1)=-3$
Nếu $a=b=c$ thì:

$P=\frac{c+c}{c}+\frac{a+a}{a}+\frac{b+b}{b}=2+2+2=6$

16 tháng 11 2021

Với \(a+b+c=0\Leftrightarrow\left\{{}\begin{matrix}b+c=-a\\c+a=-b\\a+b=-c\end{matrix}\right.\)

\(B=\dfrac{a+b}{a}\cdot\dfrac{a+c}{c}\cdot\dfrac{b+c}{b}=\dfrac{-abc}{abc}=-1\)

Với \(a+b+c\ne0\)

\(\dfrac{a+b-2021c}{c}=\dfrac{b+c-2021a}{a}=\dfrac{c+a-2021b}{b}=\dfrac{-2019\left(a+b+c\right)}{a+b+c}=-2019\\ \Leftrightarrow\left\{{}\begin{matrix}a+b-2021c=-2019c\\b+c-2021a=-2019a\\c+a-2021b=-2019b\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}a+b=2c\\b+c=2a\\c+a=2b\end{matrix}\right.\)

\(B=\dfrac{a+b}{a}\cdot\dfrac{a+c}{c}\cdot\dfrac{b+c}{b}=\dfrac{2a\cdot2b\cdot2c}{abc}=8\)

16 tháng 11 2021

Với a+b+c=0⇔⎧⎪⎨⎪⎩b+c=−ac+a=−ba+b=−ca+b+c=0⇔{b+c=−ac+a=−ba+b=−c

B=a+ba⋅a+cc⋅b+cb=−abcabc=−1B=a+ba⋅a+cc⋅b+cb=−abcabc=−1

Với a+b+c≠0a+b+c≠0

a+b−2021cc=b+c−2021aa=c+a−2021bb=−2019(a+b+c)a+b+c=−2019⇔⎧⎪⎨⎪⎩a+b−2021c=−2019cb+c−2021a=−2019ac+a−2021b=−2019b⇔⎧⎪⎨⎪⎩a+b=2cb+c=2ac+a=2b

DD
31 tháng 5 2021

\(a,b\)là hai nghiệm phân biệt của phương trình: \(x^2-2021x-c=0\).

Theo Viet: 

\(\hept{\begin{cases}a+b=2021\\ab=-c\end{cases}}\)

\(\frac{1}{a}+\frac{1}{b}=\frac{a+b}{ab}=\frac{2021}{-c}\Leftrightarrow\frac{1}{a}+\frac{1}{b}+\frac{2021}{c}=0\)

23 tháng 8 2021

là sao bạn nhỉ