c/m với mọi x thuộc R: \(\left(\frac{12}{5}\right)^2+\left(\frac{15}{4}\right)^x+\left(\frac{20}{3}\right)^x\ge3^x+4^x+5^x\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng BĐT AM-GM ta có:
\(\left(\frac{12}{5}\right)^x+\left(\frac{15}{4}\right)^x\ge2\sqrt{9^x}=2\cdot3^x\)
\(\left(\frac{15}{4}\right)^x+\left(\frac{20}{3}\right)^x\ge2\sqrt{25^x}=2\cdot5^x\)
\(\left(\frac{20}{3}\right)^x+\left(\frac{12}{5}\right)^x\ge2\sqrt{16^x}=2\cdot4^x\)
Cộng theo vế ta có: \(2VT\ge2VP\Leftrightarrow VT\ge VP\)
\(\left(\frac{12}{5}\right)^x+\left(\frac{15}{4}\right)^x\ge2\sqrt{\left(\frac{12}{5}\right)^x.\left(\frac{15}{4}\right)^x}=2.3^x;\left(\frac{20}{3}\right)^x+\left(\frac{12}{5}\right)^x\ge2.4^x\)
Cộng các vế tương ứng => đpcm
c) \(\frac{x-1}{2009}+\frac{x-2}{2008}=\frac{x-3}{2007}+\frac{x-4}{2006}\)
\(\Leftrightarrow\left(\frac{x-1}{2009}-1\right)+\left(\frac{x-2}{2008}-1\right)=\left(\frac{x-3}{2007}-1\right)+\left(\frac{x-4}{2006}-1\right)\)
\(\Leftrightarrow\frac{x-2010}{2009}+\frac{x-2010}{2008}-\frac{x-2010}{2007}-\frac{x-2010}{2006}=0\)
\(\Leftrightarrow\left(x-2010\right).\left(\frac{1}{2009}+\frac{1}{2008}-\frac{1}{2007}-\frac{1}{2006}\right)=0\)
\(\Leftrightarrow x-2010=0\)
\(\Leftrightarrow x=0+2010\)
\(\Rightarrow x=2010\)
Vậy \(x=2010.\)
Mình chỉ làm câu c) thôi nhé.
Chúc bạn học tốt!
Áp dụng BĐT AM-GM ta có:
\(\left(\frac{12}{5}\right)^x+\left(\frac{15}{4}\right)^x\ge2\sqrt{9^x}=2\cdot3^x\)
\(\left(\frac{15}{4}\right)^x+\left(\frac{20}{3}\right)^x\ge2\sqrt{25^x}=2\cdot5^x\)
\(\left(\frac{20}{3}\right)^x+\left(\frac{12}{5}\right)^x\ge2\sqrt{16^x}=2\cdot4^x\)
Cộng theo vế 3 BĐT trên ta có:
\(2\left[\left(\frac{12}{5}\right)^x+\left(\frac{15}{4}\right)^x+\left(\frac{20}{3}\right)^x\right]\ge2\left(3^x+4^x+5^x\right)\)
\(\Rightarrow\left(\frac{12}{5}\right)^x+\left(\frac{15}{4}\right)^x+\left(\frac{20}{3}\right)^x\ge3^x+4^x+5^x\)