Cho a,b thuộc Z, biết 9a+4b/17 có giá trị nguyên. chứng tỏ -2a+b/17 cũng có giá trị nguyên.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) f(0) = c; f(0) nguyên => c nguyên (*)
f(1) = a+ b + c ; f(1) nguyên => a+ b + c nguyên (**)
f(2) = 4a + 2b + c ; f(2) nguyên => 4a + 2b + c nguyên (***)
Từ (*)(**)(***) => a + b và 4a + 2b nguyên
4a + 2b = 2a + 2.(a + b) có giá trị nguyên mà 2(a+ b) nguyên do a+ b nguyên
nên 2a nguyên => 4a có giá trị nguyên mà 4a + 2b nguyên do đó 2b có giá trị nguyên
b) f(3) = 9a + 3b + c = (a+ b + c) + (4a + 2b) + 4a
Vì a+ b + c ; 4a + 2b; 4a đều có giá trị nguyên nên f(3) có giá trị nguyên
f(4) = 16a + 4b + c = (a+ b) + (9a + 3b + c) + 3. 2a
Vì a+ b; 9a + 3b + c; 2a đều nguyên nên f(4) có giá trị nguyên
f(5) = 25a + 5b + c = (16a + 4b + c) + (a+ b) + 4. 2a
Vì 16a + 4b + c ; a+ b; 2a đều có giá trị nguyên nên f(5) có giá trị nguyên
a.\(A=\frac{6n+7}{2n+1}=\frac{3\left(2n+1\right)-3+7}{2n+1}=3+\frac{4}{2n+1}\)
Để A nguyên thì 4 phải chia hết cho 2n+1
=> 2n+1 \(\varepsilon\)Ư(4) = {-4;-2;-1;1;2;4}
Mà 2n + 1 là số lẻ
=> 2n + 1 \(\varepsilon\){-1;1}
=> 2n \(\varepsilon\){-2;0}
=> n \(\varepsilon\){-1;0}
Vậy:...
a) a+4b chia hết cho 7 thì 5a+20b cũng chia hết cho 7
vậy (5a+20b)-(5a+3b) chia hết cho 7 nên 17b chia hết cho7
vì 17 không chia hết cho7 nên b phải chia hết cho 7
5a+3b chia hết cho 7 thì 20a+12b cũng chia hết cho 7
a+4b chia hết cho 7 thì 3a +12b cũng chia hết cho 7
vậy (20a+12b)-(3a+12b) chia hết cho7 nên 17a chia hết cho7
vì 17 không chia hết cho7 nên a phải chia hết cho 7
vì a chia hết cho7 và b chia hết cho 7 nên a+4b chia hết cho 7
b) tương tự như câu a
tích mình nhé Kim Chi !
Biểu thức nguyên khi 3a-5 chia hết cho 2a-9
=> 2(3a-5) chia hết cho 2a-9
2(3a-5)=6a-10=6a-27+17=3(2a-9)+17
=> 3a-5 chia hết cho 2a-9 khi 17 chia hết cho 2a-9. Có các TH:
+/ 2a-9=1 => a=10/2=5
+/ 2a-9=-1 => a=8/2=4
+/ 2a-9=17 => a=26/2=13
+/ 2a-9=-17 => a=-8/2=-4
ĐS: a={-4; 4; 5; 13}
Để A nguyên thì :
\(n-3\inư\left(17\right)\)
\(\Rightarrow n-3=\left(-1;1-17;17\right)\)
\(\Rightarrow n-3=-1\Rightarrow n=2\)
\(\Rightarrow n-3=1\Rightarrow n=4\)
\(\Rightarrow n-3=-17\Rightarrow n=-14\)
\(\Rightarrow n-3=17\Rightarrow n=20\)
a)Ta có ; để A thuộc N <=> (2n+5) chia hết cho (3n+1)
<=> 3(2n+5) chia hết cho (3n+1)
<=>(6n+15) chia hết cho (3n+1)
<=> (6n + 2 +13) chia hết cho (3n+1)
<=> 13 chia hết cho (3n+1)
=> (3n+1) thuộc Ư(13)
Vì n thuộc N
=> (3n+1) = 1,13
=> n = 0 hoặc 4
b)Trong phần này ta sẽ áp dung 1 tính chất sau:
a/b < (a+m)/(b+m) với a<b
Ta thấy :
x/(x+y) > x/(x+y+z)
y/(y+z) > y/(x+y+z)
z/(z+x) > z/(x+y+z)
=> A > x/(x+Y+z) + y/(x+y+z) + z/(x+y+z)
=> A>1
Ta thấy :
x/x+y < (x+z)/(x+y+z)
y/y+z < (y+x)/(x+y+z)
z/z+x < (z+y)/(x+y+z)
=> A < (x+z)/(x+y+z) +(y+x)/(x+y+z) +(z+y)/(x+y+z)
=>A< 2(x+y+z)/(x+y+z)
=> A<2
=>1<A<2
=> A ko phải là số nguyên(đpcm)